Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(5): e1011124, 2023 05.
Article in English | MEDLINE | ID: mdl-37205708

ABSTRACT

Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.


Subject(s)
COVID-19 , Chiroptera , Humans , Animals , SARS-CoV-2/genetics , Frameshift Mutation , RNA , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/chemistry
2.
Protein Sci ; 31(12): e4477, 2022 12.
Article in English | MEDLINE | ID: mdl-36254680

ABSTRACT

Prion diseases are fatal neurodegenerative diseases caused by pathogenic misfolding of the prion protein, PrP. They are transmissible between hosts, and sometimes between different species, as with transmission of bovine spongiform encephalopathy to humans. Although PrP is found in a wide range of vertebrates, prion diseases are seen only in certain mammals, suggesting that infectious misfolding was a recent evolutionary development. To explore when PrP acquired the ability to misfold infectiously, we reconstructed the sequences of ancestral versions of PrP from the last common primate, primate-rodent, artiodactyl, placental, bird, and amniote. Recombinant ancestral PrPs were then tested for their ability to form ß-sheet aggregates, either spontaneously or when seeded with infectious prion strains from human, cervid, or rodent species. The ability to aggregate developed after the oldest ancestor (last common amniote), and aggregation capabilities diverged along evolutionary pathways consistent with modern-day susceptibilities. Ancestral bird PrP could not be seeded with modern-day prions, just as modern-day birds are resistant to prion disease. Computational modeling of structures suggested that differences in helix 2 could account for the resistance of ancestral bird PrP to seeding. Interestingly, ancestral primate PrP could be converted by all prion seeds, including both human and cervid prions, raising the possibility that species descended from an ancestral primate have retained the susceptibility to conversion by cervid prions. More generally, the results suggest that susceptibility to prion disease emerged prior to ~100 million years ago, with placental mammals possibly being generally susceptible to disease.


Subject(s)
Prion Diseases , Prions , Pregnancy , Animals , Cattle , Female , Humans , Prion Proteins/chemistry , Placenta/metabolism , Prions/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Mammals
3.
PLoS Comput Biol ; 17(1): e1008603, 2021 01.
Article in English | MEDLINE | ID: mdl-33465066

ABSTRACT

The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses -1 programmed ribosomal frameshifting (-1 PRF) to control the relative expression of viral proteins. As modulating -1 PRF can inhibit viral replication, the RNA pseudoknot stimulating -1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by µs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through junctions formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting -1 PRF in SARS-CoV-2.


Subject(s)
Frameshifting, Ribosomal , Nucleic Acid Conformation , SARS-CoV-2/chemistry , COVID-19/virology , Computational Biology , Humans , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...