Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
PLoS Comput Biol ; 18(4): e1009487, 2022 04.
Article in English | MEDLINE | ID: mdl-35442945

ABSTRACT

Accurate discovery of somatic mutations in a cell is a challenge that partially lays in immaturity of dedicated analytical approaches. Approaches comparing a cell's genome to a control bulk sample miss common mutations, while approaches to find such mutations from bulk suffer from low sensitivity. We developed a tool, All2, which enables accurate filtering of mutations in a cell without the need for data from bulk(s). It is based on pair-wise comparisons of all cells to each other where every call for base pair substitution and indel is classified as either a germline variant, mosaic mutation, or false positive. As All2 allows for considering dropped-out regions, it is applicable to whole genome and exome analysis of cloned and amplified cells. By applying the approach to a variety of available data, we showed that its application reduces false positives, enables sensitive discovery of high frequency mutations, and is indispensable for conducting high resolution cell lineage tracing.


Subject(s)
Exome , Software , High-Throughput Nucleotide Sequencing , INDEL Mutation/genetics , Mutation/genetics , Exome Sequencing
3.
Biology (Basel) ; 10(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34571817

ABSTRACT

The RNA-binding protein HuD (a.k.a., ELAVL4) is involved in neuronal development and synaptic plasticity mechanisms, including addiction-related processes such as cocaine conditioned-place preference (CPP) and food reward. The most studied function of this protein is mRNA stabilization; however, we have recently shown that HuD also regulates the levels of circular RNAs (circRNAs) in neurons. To examine the role of HuD in the control of coding and non-coding RNA networks associated with substance use, we identified sets of differentially expressed mRNAs, circRNAs and miRNAs in the striatum of HuD knockout (KO) mice. Our findings indicate that significantly downregulated mRNAs are enriched in biological pathways related to cell morphology and behavior. Furthermore, deletion of HuD altered the levels of 15 miRNAs associated with drug seeking. Using these sets of data, we predicted that a large number of upregulated miRNAs form competing endogenous RNA (ceRNA) networks with circRNAs and mRNAs associated with the neuronal development and synaptic plasticity proteins LSAMP and MARK3. Additionally, several downregulated miRNAs form ceRNA networks with mRNAs and circRNAs from MEF2D, PIK3R3, PTRPM and other neuronal proteins. Together, our results indicate that HuD regulates ceRNA networks controlling the levels of mRNAs associated with neuronal differentiation and synaptic physiology.

4.
PLoS One ; 16(4): e0248097, 2021.
Article in English | MEDLINE | ID: mdl-33826614

ABSTRACT

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Subject(s)
Benzimidazoles/administration & dosage , Genomics , Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Adult , Aged , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Middle Aged , Neoplasm Metastasis , Pilot Projects , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
5.
Genome Biol ; 22(1): 92, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33781308

ABSTRACT

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Genetic Association Studies , Genetic Variation , Alleles , Chromosome Mapping , Computational Biology/methods , Genetic Association Studies/methods , Genomics/methods , Germ Cells/metabolism , High-Throughput Nucleotide Sequencing , Humans , Organ Specificity/genetics , Polymorphism, Single Nucleotide
6.
Genome Res ; 30(12): 1695-1704, 2020 12.
Article in English | MEDLINE | ID: mdl-33122304

ABSTRACT

Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.


Subject(s)
Brain/embryology , DNA, Circular/genetics , Genomic Structural Variation , Sequence Analysis, DNA/methods , Clonal Evolution , Female , Genotyping Techniques , Gestational Age , Humans , Mosaicism , Neurogenesis , Pregnancy
7.
Biol Methods Protoc ; 5(1): bpaa010, 2020.
Article in English | MEDLINE | ID: mdl-32793805

ABSTRACT

Circular RNAs (circRNAs) are evolutionarily conserved RNA species that are formed when exons "back-splice" to each other. Current computational algorithms to detect these back-splicing junctions produce divergent results, and hence there is a need for a method to distinguish true-positive circRNAs. To this end, we developed Assembly based CircRNA Validator (ACValidator) for in silico verification of circRNAs. ACValidator extracts reads from a user-defined window on either side of a circRNA junction and assembles them to generate contigs. These contigs are aligned against the circRNA sequence to find contigs spanning the back-spliced junction. When evaluated on simulated datasets, ACValidator achieved over ∼80% sensitivity on datasets with an average of 10 circRNA-supporting reads and with read lengths of at least 100 bp. In experimental datasets, ACValidator produced higher verification percentages for samples treated with ribonuclease R compared to nontreated samples. Our workflow is applicable to non-polyA-selected RNAseq datasets and can also be used as a candidate selection strategy for prioritizing experimental validations. All workflow scripts are freely accessible on our GitHub page https://github.com/tgen/ACValidator along with detailed instructions to set up and run ACValidator.

8.
J Vis Exp ; (153)2019 11 14.
Article in English | MEDLINE | ID: mdl-31789321

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs involved in functions including micro-RNA (miRNA) regulation, mediation of protein-protein interactions, and regulation of parental gene transcription. In classical next generation RNA sequencing (RNA-seq), circRNAs are typically overlooked as a result of poly-A selection during construction of mRNA libraries, or are found at very low abundance, and are therefore difficult to isolate and detect. Here, a circRNA library construction protocol was optimized by comparing library preparation kits, pre-treatment options and various total RNA input amounts. Two commercially available whole transcriptome library preparation kits, with and without RNase R pre-treatment, and using variable amounts of total RNA input (1 to 4 µg), were tested. Lastly, multiple tissue types; including liver, lung, lymph node, and pancreas; as well as multiple brain regions; including the cerebellum, inferior parietal lobe, middle temporal gyrus, occipital cortex, and superior frontal gyrus; were compared to evaluate circRNA abundance across tissue types. Analysis of the generated RNA-seq data using six different circRNA detection tools (find_circ, CIRI, Mapsplice, KNIFE, DCC, and CIRCexplorer) revealed that a stranded total RNA library preparation kit with RNase R pre-treatment and 4 µg RNA input is the optimal method for identifying the highest relative number of circRNAs. Consistent with previous findings, the highest enrichment of circRNAs was observed in brain tissues compared to other tissue types.


Subject(s)
Brain/physiology , RNA, Circular/genetics , Sequence Analysis, RNA/methods , Base Sequence , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Exome Sequencing/methods
9.
Noncoding RNA Res ; 4(1): 23-29, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30891534

ABSTRACT

Within the last decade, active research on circular RNAs (circRNAs) has dramatically improved our understanding of the expression and function of these non-coding RNAs. While several mechanisms for circRNA function have been proposed, including sequestration of microRNAs and regulation of cellular proteins, studies provide evidence that circRNAs can regulate transcription and may also serve as biomarkers. Due to the heterogeneous nature of the brain, and the dynamic transcriptional mechanisms that support neurobiological pathways, the influence of circRNAs is potentially extensive. Understanding how circRNAs contribute to key neurological pathways will fill gaps in our understanding of brain function and provide valuable insight into novel therapeutic approaches to treat neurological diseases. Here, we review recent research on circRNA expression in the brain, describe the proposed functions of circRNAs, and evaluate the role of circRNAs in neurological diseases.

10.
Article in English | MEDLINE | ID: mdl-30322893

ABSTRACT

Chordoma is a rare, orphan cancer arising from embryonal precursors of bone. Surgery and radiotherapy (RT) provide excellent local control, often at the price of significant morbidity because of the structures involved and the need for relatively high doses of RT; however, recurrence remains high. Although our understanding of the genetic changes that occur in chordoma is evolving rapidly, this knowledge has yet to translate into treatments. We performed comprehensive DNA (paired tumor/normal whole-exome and shallow whole-genome) and RNA (tumor whole-transcriptome) next-generation sequencing analyses of archival sacral and clivus chordoma specimens. Incorporation of transcriptomic data enabled the identification of gene overexpression and expressed DNA alterations, thus providing additional support for potential therapeutic targets. In three patients, we identified alterations that may be amenable to off-label FDA-approved treatments for other tumor types. These alterations include FGFR1 overexpression (ponatinib, pazopanib) and copy-number duplication of CDK4 (palbociclib) and ERBB3 (gefitinib). In a third patient, germline DNA demonstrated predicted pathogenic changes in CHEK2 and ATM, which may have predisposed the patient to developing chordoma at a young age and may also be associated with potential sensitivity to PARP inhibitors because of homologous recombination repair deficiency. Last, in the fourth patient, a missense mutation in IGF1R was identified, suggesting potential activity for investigational anti-IGF1R strategies. Our findings demonstrate that chordoma patients present with aberrations in overlapping pathways. These results provide support for targeting the IGF1R/FGFR/EGFR and CDK4/6 pathways as treatment strategies for chordoma patients. This study underscores the value of comprehensive genomic and transcriptomic analysis in the development of rational, individualized treatment plans for chordoma.


Subject(s)
Chordoma/genetics , Chordoma/therapy , Gene Expression Profiling/methods , Adult , Aged , Ataxia Telangiectasia Mutated Proteins/genetics , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Cyclin-Dependent Kinase 4/genetics , DNA-Binding Proteins , Female , Gefitinib , Genomics/methods , Humans , Male , Middle Aged , Mutation , Nuclear Proteins/genetics , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors , Pyridines , Receptor, ErbB-3/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Skull Base Neoplasms , Transcription Factors/genetics , Transcriptome
11.
BMC Genomics ; 19(1): 340, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29739336

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a novel class of endogenous, non-coding RNAs that form covalently closed continuous loops and that are both highly conserved and abundant in the mammalian brain. A role for circRNAs in sponging microRNAs (miRNAs) has been proposed, but the circRNA-miRNA-mRNA interaction networks in human brain cells have not been defined. Therefore, we identified circRNAs in RNA sequencing data previously generated from astrocytes microdissected from the posterior cingulate (PC) of Alzheimer's disease (AD) patients (N = 10) and healthy elderly controls (N = 10) using four circRNA prediction algorithms - CIRI, CIRCexplorer, find_circ and KNIFE. RESULTS: Overall, utilizing these four tools, we identified a union of 4438 unique circRNAs across all samples, of which 70.3% were derived from exonic regions. Notably, the widely reported CDR1as circRNA was detected in all samples across both groups by find_circ. Given the putative miRNA regulatory function of circRNAs, we identified potential miRNA targets of circRNAs, and further, delineated circRNA-miRNA-mRNA networks using in silico methods. Pathway analysis of the genes regulated by these miRNAs identified significantly enriched immune response pathways, which is consistent with the known function of astrocytes as immune sensors in the brain. CONCLUSIONS: In this study, we performed circRNA detection on cell-specific transcriptomic data and identified potential circRNA-miRNA-mRNA regulatory networks in PC astrocytes. Given the known function of astrocytes in cerebral innate immunity and our identification of significantly enriched immune response pathways, the circRNAs we identified may be associated with such key functions. While we did not detect recurrent differentially expressed circRNAs in the context of healthy controls or AD, we report for the first time circRNAs and their potential regulatory impact in a cell-specific and region-specific manner in aged subjects. These predicted regulatory network and pathway analyses may help provide new insights into transcriptional regulation in the brain.


Subject(s)
Alzheimer Disease/genetics , Astrocytes/metabolism , Gene Regulatory Networks , Genetic Markers , Gyrus Cinguli/metabolism , RNA/genetics , Aged , Alzheimer Disease/pathology , Astrocytes/cytology , Case-Control Studies , Cells, Cultured , Female , Gyrus Cinguli/cytology , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , RNA, Circular , RNA, Messenger/genetics
12.
Alzheimers Dement ; 14(6): 775-786, 2018 06.
Article in English | MEDLINE | ID: mdl-29396107

ABSTRACT

INTRODUCTION: Our laboratories have demonstrated that accumulation of oligomeric amyloid ß (OAß) in neurons is an essential step leading to OAß-mediated mitochondrial dysfunction. METHODS: Alzheimer's disease (AD) and matching control hippocampal neurons, astrocytes, and microglia were isolated by laser-captured microdissection from the same subjects, followed by whole-transcriptome sequencing. Complementary in vitro work was performed in OAß-treated differentiated SH-SY5Y, followed by the use of a novel CoQ10 analogue for protection. This compound is believed to be effective both in suppressing reactive oxygen species and also functioning in mitochondrial electron transport. RESULTS: We report decreases in the same mitochondrial-encoded mRNAs in Alzheimer's disease laser-captured CA1 neurons and in OAß-treated SH-SY5Y cells, but not in laser-captured microglia and astrocytes. Pretreatment with a novel CoQ10 analogue, protects neuronal mitochondria from OAß-induced mitochondrial changes. DISCUSSION: Similarity of expression changes in neurons from Alzheimer's disease brain and neuronal cells treated with OAß, and the effect of a CoQ10 analogue on the latter, suggests a pretreatment option to prevent OAß toxicity, long before the damage is apparent.


Subject(s)
Amyloid beta-Peptides/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Mitochondrial/metabolism , Aged , Alzheimer Disease/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line, Tumor , Female , Hippocampus/metabolism , Humans , In Vitro Techniques , Laser Capture Microdissection , Male , Microglia/drug effects , Microglia/metabolism , Microscopy, Electron, Transmission , Neurons/drug effects , RNA, Messenger/genetics , RNA, Mitochondrial/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
14.
Neurobiol Aging ; 63: 12-21, 2018 03.
Article in English | MEDLINE | ID: mdl-29207277

ABSTRACT

Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimer's disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinson's disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.


Subject(s)
Alzheimer Disease/virology , Brain/virology , Hepatitis B virus , Laser Capture Microdissection , Microglia/virology , Parkinson Disease/virology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Brain/pathology , Female , Humans , Male , Microglia/pathology , Parkinson Disease/pathology , Risk Factors
15.
PLoS One ; 12(7): e0177814, 2017.
Article in English | MEDLINE | ID: mdl-28700589

ABSTRACT

Recent epigenetic association studies have identified a new gene, ANK1, in the pathogenesis of Alzheimer's disease (AD). Although strong associations were observed, brain homogenates were used to generate the data, introducing complications because of the range of cell types analyzed. In order to address the issue of cellular heterogeneity in homogenate samples we isolated microglial, astrocytes and neurons by laser capture microdissection from CA1 of hippocampus in the same individuals with a clinical and pathological diagnosis of AD and matched control cases. Using this unique RNAseq data set, we show that in the hippocampus, ANK1 is significantly (p<0.0001) up-regulated 4-fold in AD microglia, but not in neurons or astrocytes from the same individuals. These data provide evidence that microglia are the source of ANK1 differential expression previously identified in homogenate samples in AD.


Subject(s)
Alzheimer Disease/metabolism , Ankyrins/genetics , Microglia/metabolism , Up-Regulation , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Ankyrins/metabolism , Case-Control Studies , Female , Hippocampus/cytology , Hippocampus/metabolism , Humans , Male , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Genome Res ; 27(4): 524-532, 2017 04.
Article in English | MEDLINE | ID: mdl-28373299

ABSTRACT

Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.


Subject(s)
Chromosome Aberrations , Melanoma/genetics , Mutation , Skin Neoplasms/genetics , Telomerase/genetics , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , GTP Phosphohydrolases/genetics , Genes, Neurofibromatosis 1 , Humans , Male , Melanoma/pathology , Membrane Proteins/genetics , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology , Telomerase/metabolism , Transcriptome , p21-Activated Kinases/genetics
17.
Neurobiol Aging ; 36(2): 583-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448601

ABSTRACT

Alzheimer's disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades before the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n = 10) and healthy elderly control (n = 10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene coexpression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in beta amyloid generation or clearance. These data provide key insights into astrocyte-specific contributions to AD, and we present this data set as a publicly available resource.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Astrocytes/immunology , Astrocytes/metabolism , Energy Metabolism/genetics , Gene Expression/genetics , Immunity, Cellular/genetics , Mitochondria/genetics , Mitochondria/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Antigens, Differentiation, B-Lymphocyte/physiology , Brain/cytology , Brain/immunology , Clusterin/physiology , Complement C3/physiology , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Female , Histocompatibility Antigens Class II/physiology , Humans , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sequence Analysis, RNA , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...