Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(11): 108213, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026201

ABSTRACT

The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.

2.
J Vis Exp ; (165)2020 11 07.
Article in English | MEDLINE | ID: mdl-33226024

ABSTRACT

The rat orthotopic liver transplantation (OLT) model is a powerful tool to study acute and chronic rejection. However, it is not a complete representation of human liver transplantation due to the absence of arterial reconnection. Described here is a modified transplantation procedure that includes the incorporation of hepatic artery (HA) reconnection, leading to a marked improvement in transplant outcomes. With a mean anhepatic time of 12 min and 14 s, HA reconnection results in improved perfusion of the transplanted liver and an increase in long-term recipient survival from 37.5% to 88.2%. This protocol includes the use of 3D-printed cuffs and holders to connect the portal vein and infrahepatic inferior vena cava. It can be implemented for studying multiple aspects of liver transplantation, from immune response and infection to technical aspects of the procedure. By incorporating a simple and practical method for arterial reconnection using a microvascular technique, this modified rat OLT protocol closely mimics aspects of human liver transplantation and will serve as a valuable and clinically relevant research model.


Subject(s)
Graft Rejection/prevention & control , Hepatic Artery/surgery , Liver Diseases/surgery , Liver Transplantation/veterinary , Portal Vein/surgery , Postoperative Complications/prevention & control , Animals , Liver Transplantation/methods , Male , Rats , Rats, Inbred Lew
3.
ACS Nano ; 14(4): 4698-4715, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32255624

ABSTRACT

There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Disease Models, Animal , Humans , Liver , Marmota , Tissue Distribution
4.
J Infect Dis ; 218(8): 1210-1218, 2018 09 08.
Article in English | MEDLINE | ID: mdl-29800309

ABSTRACT

Background: Attenuated varicella zoster virus (VZV) is a promising vector for recombinant vaccines. Because human immunodeficiencyvirus (HIV) vaccines are believed to require mucosal immunogenicity, we characterized mucosal VZV-specific humoral immunity following VZVOka vaccination. Methods: Adult Kenyan VZV-seropositive women (n = 44) received a single dose of the live zoster VZVOka vaccine. The anamnestic responses to the virus were followed longitudinally in both plasma and mucosal secretions using an in-house glycoprotein enzyme-linked immunosorbent assay and safety and reactogenicity monitored. VZV seroprevalence and baseline responses to the virus were also characterized in our cohorts (n = 288). Results: Besides boosting anti-VZV antibody responses systemically, vaccination also boosted anti-VZV immunity in the cervicovaginal mucosa with a 2.9-fold rise in immunoglobulin G (P < .0001) and 1.6-fold rise in immunoglobulin A (IgA) (P = .004) from the time before immunization and 4 weeks postvaccination. Baseline analysis demonstrated high avidity antibodies at the gastrointestinal and genital mucosa of VZV-seropositive women. Measurement of VZV-specific IgA in saliva is a sensitive tool for detecting prior VZV infection. Conclusions: VZVOka vaccine was safe and immunogenic in VZV-seropositive adult Kenyan women. We provided compelling evidence of VZV ability to induce genital mucosa immunity. Clinical Trials Registration: NCT02514018.


Subject(s)
Antibodies, Viral/metabolism , Herpesvirus 3, Human/isolation & purification , Immunity, Humoral , Mucous Membrane/immunology , Vagina/immunology , Varicella Zoster Virus Infection/prevention & control , Antibodies, Viral/blood , Female , Herpes Zoster Vaccine/immunology , Humans , Kenya/epidemiology , Vaccines, Attenuated , Varicella Zoster Virus Infection/epidemiology , Varicella Zoster Virus Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...