Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748026

ABSTRACT

We studied the photoluminescence decay kinetics of three nanosized anatase TiO2 photocatalysts (particle diameter: 7, 25, or 200 nm) at the pico- and nanosecond timescales for elucidating the origin of the luminescence. Luminescence spectra from these photocatalysts obtained under steady-state excitation conditions comprised green luminescence that decayed on the picosecond timescale and red luminescence that persisted at the nanosecond timescale. Among the photocatalysts with different sizes, there were marked differences in the rate of luminescence decay at the picosecond timescale (<600 ps), although the spectral shapes were comparable. The similarity in the spectral shape indicated that self-trapped excitons (STEs) directly populated in the bulk of the particle by light excitation emit the luminescence in a picosecond timescale, and the difference in the rate of luminescence decay originated from the quenching at the particle surface. Furthermore, we theoretically considered excitation light intensity dependence on the quantum yield of the luminescence and found that the quenching reaction was not limited by the diffusion of the STEs but by the reaction at the particle surface. Both the spectral shape and time-evolution of the red luminescence from the deep trapped excitons in the nanosecond timescale varied among the photocatalysts, suggesting that the trap sites in different photocatalysts have different characteristics with respect to luminescence. Therefore, the relation between trap states and photocatalytic activity will be elucidated from the red luminescence study.

2.
ACS Appl Mater Interfaces ; 16(20): 26325-26339, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716494

ABSTRACT

Mixed oxides of Rh-Cr (RhCrOx), containing Rh3+ and Cr3+ cations, are commonly used as cocatalysts for the hydrogen evolution reaction (HER) on particulate photocatalysts. The precise physicochemical mechanisms of the HER at the catalytic sites of these oxides are not well understood. In this study, model cocatalyst electrodes, composed of nanoparticulate RhCrOx, were fabricated to investigate the physicochemical mechanisms of the HER. Electroanalytical and X-ray photoelectron spectroscopic measurements revealed that nanoparticulate RhCrOx produces reduced Rh (Rh0) species by maintaining an electrode potential more negative than 0.03 V versus the reversible hydrogen electrode (VRHE). This results in significant enhancement of the HER activity. The catalytic activity for the HER stems from the reduced Rh species, and the inclusion of Cr3+ (CrOx) aided in the electron transfer process at the solid/liquid interface, resulting in a higher current density during the HER. To achieve a solar-to-hydrogen efficiency of over 3%, the conduction band minimum of the particulate photocatalyst should be positioned more negatively than -0.10 VRHE. Moreover, the formation of electron trap states at potentials more positive than 0.03 VRHE should be avoided. This study highlights the importance of understanding the catalytic sites on metal oxide cocatalysts. Moreover, it offers a design strategy for enhancing the efficiency of photocatalytic water splitting.

3.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38458194

ABSTRACT

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Subject(s)
Hand , Medulla Oblongata , Animals , Medulla Oblongata/physiology , Spinal Cord/physiology , Touch , Primates , Somatosensory Cortex/physiology , Movement/physiology
4.
Angew Chem Int Ed Engl ; 62(46): e202312938, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37786233

ABSTRACT

Photocatalytic water splitting is a simple means of converting solar energy into storable hydrogen energy. Narrow-band gap oxysulfide photocatalysts have attracted much attention in this regard owing to the significant visible-light absorption and relatively high stability of these compounds. However, existing materials suffer from low efficiencies due to difficulties in synthesizing these oxysulfides with suitable degrees of crystallinity and particle sizes, and in constructing effective reaction sites. The present work demonstrates the production of a Gd2 Ti2 O5 S2 (λ<650 nm) photocatalyst capable of efficiently driving photocatalytic reactions. Single-crystalline, plate-like Gd2 Ti2 O5 S2 particles with atomically ordered surfaces were synthesized by flux and chemical etching methods. Ultrafine Pt-IrO2 cocatalyst particles that promoted hydrogen (H2 ) and oxygen (O2 ) evolution reactions were subsequently loaded on the Gd2 Ti2 O5 S2 while ensuring an intimate contact by employing a microwave-heating technique. The optimized Gd2 Ti2 O5 S2 was found to evolve H2 from an aqueous methanol solution with a remarkable apparent quantum efficiency of 30 % at 420 nm. This material was also stable during O2 evolution in the presence of a sacrificial reagent. The results presented herein demonstrates a highly efficient narrow-band gap oxysulfide photocatalyst with potential applications in practical solar hydrogen production.

5.
J Chem Phys ; 159(14)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37815106

ABSTRACT

The Cattaneo-Vernotte model has been widely studied to take momentum relaxation into account in transport equations. Yet, the effect of reactions on the Cattaneo-Vernotte model has not been fully elucidated. At present, it is unclear how the current density associated with reactions can be expressed in the Cattaneo-Vernotte model. Herein, we derive a modified Cattaneo-Vernotte model by applying the projection operator method to the Fokker-Planck-Kramers equation with a reaction sink. The same modified Cattaneo-Vernotte model can be derived by a Grad procedure. We show that the inertial effect influences the reaction rate coefficient differently depending on whether the intrinsic reaction rate constant in the reaction sink term depends on the solute relative velocity or not. The momentum relaxation effect can be expressed by a modified Smoluchowski equation including a memory kernel using the Cattaneo-Vernotte model. When the intrinsic reaction rate constant is independent of the reactant velocity and is localized, the modified Smoluchowski equation should be generalized to include a reaction term without a memory kernel. When the intrinsic reaction rate constant depends on the relative velocity of reactants, an additional reaction term with a memory kernel is required because of competition between the current density associated with the reaction and the diffusive flux during momentum relaxation. The competition effect influences even the long-time reaction rate coefficient.

6.
Nat Commun ; 14(1): 6537, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880215

ABSTRACT

Our rich behavioural repertoire is supported by complicated synaptic connectivity in the central nervous system, which must be modulated to prevent behavioural control from being overwhelmed. For this modulation, presynaptic inhibition is an efficient mechanism because it can gate specific synaptic input without interfering with main circuit operations. Previously, we reported the task-dependent presynaptic inhibition of the cutaneous afferent input to the spinal cord in behaving monkeys. Here, we report presynaptic inhibition of the proprioceptive afferent input. We found that the input from shortened muscles is transiently facilitated, whereas that from lengthened muscles is persistently reduced. This presynaptic inhibition could be generated by cortical signals because it started before movement onset, and its size was correlated with the performance of stable motor output. Our findings demonstrate that presynaptic inhibition acts as a dynamic filter of proprioceptive signals, enabling the integration of task-relevant signals into spinal circuits.


Subject(s)
Proprioception , Spinal Cord , Animals , Haplorhini , Spinal Cord/physiology , Proprioception/physiology , Spine , Movement/physiology
7.
Angew Chem Int Ed Engl ; 62(42): e202310607, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37653542

ABSTRACT

Photocatalytic water splitting is an ideal means of producing hydrogen in a sustainable manner, and developing highly efficient photocatalysts is a vital aspect of realizing this process. The photocatalyst Y2 Ti2 O5 S2 (YTOS) is capable of absorbing at wavelengths up to 650 nm and exhibits outstanding thermal and chemical durability compared with other oxysulfides. However, the photocatalytic performance of YTOS synthesized using the conventional solid-state reaction (SSR) process is limited owing to the large particle sizes and structural defects associated with this synthetic method. Herein, we report the synthesis of YTOS particles by a flux-assisted technique. The enhanced mass transfer efficiency in the flux significantly reduced the preparation time compared with the SSR method. In addition, the resulting YTOS showed improved photocatalytic H2 and O2 evolution activity when loaded with Rh and Co3 O4 co-catalysts, respectively. These improvements are attributed to the reduced particle size and enhanced crystallinity of the material as well as the slower decay of photogenerated carriers on a nanosecond to sub-microsecond time range. Further optimization of this flux-assisted method together with suitable surface modification is expected to produce high-quality YTOS crystals with superior photocatalytic activity.

8.
Glob Chall ; 7(6): 2200207, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37287596

ABSTRACT

An isotropic thermo-electrochemical cell is introduced with a high Seebeck coefficient (S e) of 3.3 mV K-1 that uses a ferricyanide/ferrocyanide/guanidinium-based agar-gelated electrolyte. A power density of about 20 µW cm-2 is achieved at a temperature difference of about 10 K, regardless of whether the heat source is on the top or bottom section of the cell. This behavior is very different from that of cells with liquid electrolytes, which exhibit high anisotropy, and for which high S e values are achieved only by heating the bottom electrode. The guanidinium-containing gelatinized cell does not exhibit steady-state operation, but its performance recovers when disconnected from the external load, suggesting that the observed power drop under load conditions is not due to device degeneration. The large S e value and isotropic properties can mean that the novel system represents a major advancement from the standpoint of harvesting of low-temperature heat, such as body heat and solar thermal heat.

9.
PLoS One ; 18(6): e0287065, 2023.
Article in English | MEDLINE | ID: mdl-37294815

ABSTRACT

Generating non-human primate models of human diseases is important for the development of therapeutic strategies especially for neurodegenerative diseases. The common marmoset has attracted attention as a new experimental animal model, and many transgenic marmosets have been produced using lentiviral vector-mediated transgenesis. However, lentiviral vectors have a size limitation of up to 8 kb in length for transgene applications. Therefore, the present study aimed to optimize a piggyBac transposon-mediated gene transfer method in which transgenes longer than 8 kb were injected into the perivitelline space of marmoset embryos, followed by electroporation. We constructed a long piggyBac vector carrying the gene responsible for Alzheimer's disease. The optimal weight ratio of the piggyBac transgene vector to the piggyBac transposase mRNA was examined using mouse embryos. Transgene integration into the genome was confirmed in 70.7% of embryonic stem cells established from embryos injected with 1000 ng of transgene and transposase mRNA. Under these conditions, long transgenes were introduced into marmoset embryos. All embryos survived after transgene introduction treatment, and transgenes were detected in 70% of marmoset embryos. The transposon-mediated gene transfer method developed in this study can be applied to the genetic modification of non-human primates, as well as large animals.


Subject(s)
Callithrix , Genetic Vectors , Animals , Mice , Callithrix/genetics , Genetic Vectors/genetics , Gene Transfer Techniques , Transgenes , Callitrichinae , Transposases/genetics , RNA, Messenger , DNA Transposable Elements/genetics
10.
J Chem Phys ; 158(11): 114704, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948811

ABSTRACT

The time-of-flight method is a fundamental approach for characterizing the transport properties of semiconductors. Recently, the transient photocurrent and optical absorption kinetics have been simultaneously measured for thin films; pulsed-light excitation of thin films should give rise to non-negligible in-depth carrier injection. Yet, the effects of in-depth carrier injection on the transient currents and optical absorption have not yet been elucidated theoretically. Here, by considering the in-depth carrier injection in simulations, we found a 1/t1-α/2 initial time (t) dependence rather than the conventional 1/t1-α dependence under a weak external electric field, where α < 1 is the index of dispersive diffusion. The asymptotic transient currents are not influenced by the initial in-depth carrier injection and follow the conventional 1/t1+α time dependence. We also present the relation between the field-dependent mobility coefficient and the diffusion coefficient when the transport is dispersive. The field dependence of the transport coefficients influences the transit time in the photocurrent kinetics dividing two power-law decay regimes. The classical Scher-Montroll theory predicts that a1 + a2 = 2 when the initial photocurrent decay is given by 1/ta1 and the asymptotic photocurrent decay is given by 1/ta2 . The results shed light on the interpretation of the power-law exponent of 1/ta1 when a1 + a2 ≠ 2.

11.
Front Neurol ; 14: 1094774, 2023.
Article in English | MEDLINE | ID: mdl-36846141

ABSTRACT

A major challenge in human stroke research is interpatient variability in the extent of sensorimotor deficits and determining the time course of recovery following stroke. Although the relationship between the extent of the lesion and the degree of sensorimotor deficits is well established, the factors determining the speed of recovery remain uncertain. To test these experimentally, we created a cortical lesion over the motor cortex using a reproducible approach in four common marmosets, and characterized the time course of recovery by systematically applying several behavioral tests before and up to 8 weeks after creation of the lesion. Evaluation of in-cage behavior and reach-to-grasp movement revealed consistent motor impairments across the animals. In particular, performance in reaching and grasping movements continued to deteriorate until 4 weeks after creation of the lesion. We also found consistent time courses of recovery across animals for in-cage and grasping movements. For example, in all animals, the score for in-cage behaviors showed full recovery at 3 weeks after creation of the lesion, and the performance of grasping movement partially recovered from 4 to 8 weeks. In addition, we observed longer time courses of recovery for reaching movement, which may rely more on cortically initiated control in this species. These results suggest that different recovery speeds for each movement could be influenced by what extent the cortical control is required to properly execute each movement.

12.
Chemistry ; 29(24): e202204058, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36764932

ABSTRACT

The hydrogen evolution reaction (HER) of Rh nanoparticles (RhNP) coated with an ultrathin layer of Cr-oxides (CrOx ) was investigated as a model electrode for the Cr2 O3 /Rh-metal core-shell-type cocatalyst system for photocatalytic water splitting. The CrOx layer was electrodeposited over RhNP on a transparent conductive fluorine-doped tin oxide (FTO) substrate. The CrOx layer on RhNP facilitates the electron transfer process at the CrOx /RhNP interface, leading to the increased current density for the HER. Impedance spectroscopic analysis revealed that the CrOx layer transferred protons via the hopping mechanism to the RhNP surface for HER. In addition, CrOx restricted electron transfer from the FTO to the electrolyte and/or RhNP and suppressed the backward reaction by limiting oxygen migration. This study clarifies the crucial role of the ultrathin CrOx layer on nanoparticulate cocatalysts and provides a cocatalyst design strategy for realizing efficient photocatalytic water splitting.

13.
J Phys Chem Lett ; 13(44): 10356-10363, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36314742

ABSTRACT

Photoelectrochemical (PEC) water splitting using Ta3N5 anodes shows a high solar-to-hydrogen (STH) efficiency approaching 10%. However, the long-term stability of gas evolution should be improved for the commercial utilization of PEC water-splitting technology. Herein, we examined the photocurrent degradation of photoanodes prepared by uniformly loading a NiFeOx cocatalyst onto a Ta3N5 semiconductor. Although spectroscopic analysis showed that the degradation was attributable to the formation of an oxide layer, several oxide growth kinetic laws and mechanisms are known. We theoretically derived the photocurrent kinetic laws instead of the oxide growth kinetic laws by generalizing the Cabrera-Mott oxidation theory of metal oxidation in air to apply it to photocorrosion. The measured photocurrent kinetics are fully consistent with the theoretical kinetic laws. We show that ion drift due to charging of the oxide layer limits oxide growth even though uniform cocatalyst loading is designed to prevent self-oxidation of Ta3N5.

14.
Brain Commun ; 4(4): fcac200, 2022.
Article in English | MEDLINE | ID: mdl-35974798

ABSTRACT

The Fugl-Meyer Assessment is widely used to test motor function in stroke survivors. In the Fugl-Meyer Assessment, stroke survivors perform several movement tasks and clinicians subjectively rate the performance of each task item. The individual task items in the Fugl-Meyer Assessment are selected on the basis of clinical experience, and their physiological relevance has not yet been evaluated. In the present study, we aimed to objectively rate the performance of task items by measuring the muscle activity of 41 muscles from the upper body while stroke survivors and healthy participants performed 37 Fugl-Meyer Assessment upper extremity task items. We used muscle synergy analysis to compare muscle activity between subjects and found that 13 muscle synergies in the healthy participants (which we defined as standard synergies) were able to reconstruct all of the muscle activity in the Fugl-Meyer Assessment. Among the standard synergies, synergies involving the upper arms, forearms and fingers were activated to varying degrees during different task items. In contrast, synergies involving posterior trunk muscles were activated during all tasks, which suggests the importance of posterior trunk muscle synergies throughout all sequences. Furthermore, we noted the inactivation of posterior trunk muscle synergies in stroke survivors with severe but not mild impairments, suggesting that lower trunk stability and the underlying activity of posterior trunk muscle synergies may have a strong influence on stroke severity and recovery. By comparing the synergies of stroke survivors with standard synergies, we also revealed that some synergies in stroke survivors corresponded to merged standard synergies; the merging rate increased with the impairment of stroke survivors. Moreover, the degrees of severity-dependent changes in the merging rate (the merging rate-severity relationship) were different among different task items. This relationship was significant for 26 task items only and not for the other 11 task items. Because muscle synergy analysis evaluates coordinated muscle activities, this different dependency suggests that these 26 task items are appropriate for evaluating muscle coordination and the extent of its impairment in stroke survivors. Overall, we conclude that the Fugl-Meyer Assessment reflects physiological function and muscle coordination impairment and suggest that it could be performed using a subset of the 37 task items.

15.
Phys Chem Chem Phys ; 24(29): 17485-17495, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35822609

ABSTRACT

Visible-light responsive photocatalytic materials are expected to be deployed for practical use in photocatalytic water splitting. One of the promising materials as a p-type semiconductor, oxysulfides, was investigated in terms of the local charge carrier behavior for each particle by using a home-built time-resolved microscopic technique in combination with clustering analysis. We could differentiate electron and hole trapping to the surface states and the following recombination on a micron-scale from the nanosecond to microsecond order. The map of the charge carrier type revealed that charge trapping sites for electrons and holes were spatially separated within each particle/aggregate. Furthermore, the effect of the rhodium cocatalyst was recognized as a new electron pathway, trapping to the rhodium site and the following recombination, which was delayed compared with the original electron recombination process. The Rh effect was discussed based on the phenomenological simulation, revealing a possible reason for the decay was due to the anisotropic diffusion of charge carriers in oxysulfides or the interfacial energy barrier at the interface.

16.
Article in English | MEDLINE | ID: mdl-35075902

ABSTRACT

Ferricyanide/ferrocyanide/guanidinium-based thermoelectrochemical cells have been investigated under different loading conditions in this work. Compared with ferricyanide/ferrocyanide-based devices, the device with guanidinium-added electrolytes shows higher power and energy densities. We observed that the enhanced performance is not due to the ionic Seebeck effect of guanidinium but because of the configuration entropy change resulting from the selective binding of Gdm+ to Fe(CN)64-. However, the device with guanidinium-added electrolyte does not show steady-state operation. The two possible reasons include (1) the difficult diffusion of Fe(CN)63- into the crystal layer of (Gdm+)n[Fe(CN)64-] at the hot electrode and (2) the difficult precipitation of (Gdm+)n[Fe(CN)64-] formed at the cold side upon the binding of the reduced Fe(CN)64- with Gdm+. Nevertheless, the performance recovers once the device is disconnected from the external loading. Due to the high thermopower after adding guanidinium, we successfully fabricate self-powered sensors by connecting four flexible cells in series. The sensors can transfer humidity, temperature, and air pressure data wirelessly using body heat. Therefore, ferricyanide/ferrocyanide/guanidinium is a promising electrolyte material for applications of low-grade energy harvesting.

17.
Front Syst Neurosci ; 15: 801492, 2021.
Article in English | MEDLINE | ID: mdl-34924967

ABSTRACT

The aim of this study was to elucidate the size and distribution of dorsal root ganglion (DRG) neurons in non-human primates and to compare them with those of rodent DRG neurons. By measuring the size of NeuN-, NF200-, and peripherin-positive DRG neurons in the lumbar spinal cord of rats and marmosets, we found that the cell size distribution pattern was comparable in both species, although DRG neurons in marmosets were larger than those of rodents. This is the first demonstration that DRG neurons in marmosets have a bimodal size distribution, which has been well established in rodents and humans.

18.
Nat Commun ; 12(1): 7055, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876590

ABSTRACT

Oxysulfide semiconductor, Y2Ti2O5S2, has recently discovered its exciting potential for visible-light-induced overall water splitting, and therefore, imperatively requires the probing of unknown fundamental charge loss pathways to engineer the photoactivity enhancement. Herein, transient diffuse reflectance spectroscopy measurements are coupled with theoretical calculations to unveil the nanosecond to microsecond time range dynamics of the photogenerated charge carriers. In early nanosecond range, the pump-fluence-dependent decay dynamics of the absorption signal is originated from the bimolecular recombination of mobile charge carriers, in contrast, the power-law decay kinetics in late microsecond range is dominated by hole detrapping from exponential tail trap states of valence band. A well-calibrated theoretical model estimates various efficiency limiting material parameters like recombination rate constant, n-type doping density and tail-states parameters. Compared to metal oxides, longer effective carrier lifetime ~6 ns is demonstrated. Different design routes are proposed to realize efficiency beyond 10% for commercial solar-to-hydrogen production from oxysulfide photocatalysts.

19.
Front Syst Neurosci ; 15: 774596, 2021.
Article in English | MEDLINE | ID: mdl-34955770

ABSTRACT

Toward clarifying the biomechanics and neural mechanisms underlying coordinated control of the complex hand musculoskeletal system, we constructed an anatomically based musculoskeletal model of the Japanese macaque (Macaca fuscata) hand, and then estimated the muscle force of all the hand muscles during a precision grip task using inverse dynamic calculation. The musculoskeletal model was constructed from a computed tomography scan of one adult male macaque cadaver. The hand skeleton was modeled as a chain of rigid links connected by revolute joints. The path of each muscle was defined as a series of points connected by line segments. Using this anatomical model and a model-based matching technique, we constructed 3D hand kinematics during the precision grip task from five simultaneous video recordings. Specifically, we collected electromyographic and kinematic data from one adult male Japanese macaque during the precision grip task and two sequences of the precision grip task were analyzed based on inverse dynamics. Our estimated muscular force patterns were generally in agreement with simultaneously measured electromyographic data. Direct measurement of muscle activations for all the muscles involved in the precision grip task is not feasible, but the present inverse dynamic approach allows estimation for all the hand muscles. Although some methodological limitations certainly exist, the constructed model analysis framework has potential in clarifying the biomechanics and neural control of manual dexterity in macaques and humans.

20.
Mol Ther Methods Clin Dev ; 23: 11-22, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34552999

ABSTRACT

Adeno-associated virus 6 (AAV6) has been proposed as a potential vector candidate for specific gene expression in pain-related dorsal root ganglion (DRG) neurons, but this has not been confirmed in nonhuman primates. The aim of our study was to analyze the transduction efficiency and target specificity of this viral vector in the common marmoset by comparing it with those in the rat. When green fluorescent protein-expressing serotype-6 vector was injected into the sciatic nerve, the efficiency of gene expression in DRG neurons was comparable in both species. We found that the serotype-6 vector was largely specific to the pain-related ganglion neurons in the marmoset, as well as in the rat, whereas the serotype-9 vector resulted in contrasting effects in the two species. Neither AAV6 nor AAV9 resulted in DRG toxicity when administered via the sciatic nerve, suggesting this as a safer route of sensory nerve transduction than the currently used intrathecal or intravenous administrative routes. Furthermore, the AAV6 vector could be an optimal serotype for gene therapy for human chronic pain that has a minimal effect on other somatosensory functions of DRG neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...