Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Ther Apher Dial ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087844

ABSTRACT

INTRODUCTION: We aimed to determine whether unfractionated heparin (UH) and low molecular weight heparin (LH) contribute to aberrant carnitine metabolism in patients receiving hemodialysis. METHODS: The rate of increase in serum free fatty acids (FFAs) and the ratio of acylcarnitine to free carnitine (AC/FC) from before to after hemodialysis were determined in patients receiving UH and LH. Additionally, the effect of switching patients to UH from LH was examined. RESULTS: AC/FC was significantly higher in the UH group. In addition, serum FFAs in that group increased to 0.825 ± 0.270 after dialysis from 0.172 ± 0.160 before dialysis, showing a positive correlation with AC/FC. Furthermore, AC/FC was observed to be significantly higher in patients who were switched to UH from LH at 3 months after the change. CONCLUSION: Compared with UH, LH has a lesser effect on lipid metabolism, suggesting that it also has a lesser effect on carnitine metabolism.

2.
Nat Commun ; 12(1): 1191, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608540

ABSTRACT

Atomic metal wires have great promise for practical applications in devices due to their unique electronic properties. Unfortunately, such atomic wires are extremely unstable. Here we fabricate stable atomic silver wires (ASWs) with appreciably unoccupied states inside the parallel tunnels of α-MnO2 nanorods. These unoccupied Ag 4d orbitals strengthen the Ag-Ag bonds, greatly enhancing the stability of ASWs while the presence of delocalized 5s electrons makes the ASWs conducting. These stable ASWs form a coherently oriented three-dimensional wire array of over 10 nm in width and up to 1 µm in length allowing us to connect it to nano-electrodes. Current-voltage characteristics of ASWs show a temperature-dependent insulator-to-metal transition, suggesting that the atomic wires could be used as thermal electrical devices.

3.
Microscopy (Oxf) ; 70(4): 375-381, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-33502514

ABSTRACT

Methodology for quantitative evaluation of electron radiation damage and calculation of tolerable electron dose was developed to achieve damage-less scanning electron microscope (SEM) observation of beam-sensitive polymer film. The radiation damage is typically evaluated with visual impressions of SEM images; however, this method may be unreliable because observer's subjectivity may affect the results. Evaluation with quantitative value is crucial to improve reliability. In this study, the radiation damage was evaluated by using normalized correlative coefficient (RNCC) between an initial frame and latter frames of the multiple SEM images that were taken consecutively. Tolerable dose was obtained by defining a threshold point of RNCC where rapid reduction of RNCC started. A SEM image with less damage and acceptable signal-to-noise ratio was obtained by integrating the images from the initial frame to the tolerable frame.

4.
ACS Appl Mater Interfaces ; 12(24): 27131-27139, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32427458

ABSTRACT

Organic-inorganic lead halide perovskites are promising materials for realization of low-cost and high-efficiency solar cells. Because of the toxicity of lead, Sn-based perovskite materials have been developed as alternatives to enable fabrication of Pb-free perovskite solar cells. However, the solar cell performance of Sn-based perovskite solar cells (Sn-PSCs) remains poor because of their large open-circuit voltage (VOC) loss. Sn-based perovskite materials have lower electron affinities than Pb-based perovskite materials, which result in larger conduction band offset (CBO) values at the interface between the Sn-based perovskite and a conventional electron transport layer (ETL) material such as TiO2. Herein, the relationship between the VOC and the CBO in these devices was studied to improve the solar cell performances of Sn-PSCs. It was found that the band offset at the ETL/perovskite layer interface affects the VOC of the Sn-PSCs significantly but does not affect that of the Pb-PSCs because the Sn-based perovskite material is a p-type semiconductor, unlike the Pb-based perovskite. It was also found that Nb2O5 has the CBO that is closest to zero for Sn-based perovskite materials, and the VOC values of Sn-PSCs that use Nb2O5 as their ETL are higher than those of Sn-PSCs using TiO2 or SnO2 ETLs. This study indicates that control of the energy alignment at the ETL/perovskite layer interface is an important factor in improving the VOC values of Sn-PSCs.

5.
Adv Mater ; 31(10): e1806823, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30633402

ABSTRACT

Perovskite solar cells have received great attention because of their rapid progress in efficiency, with a present certified highest efficiency of 23.3%. Achieving both high efficiency and high thermal stability is one of the biggest challenges currently limiting perovskite solar cells because devices displaying stability at high temperature frequently suffer from a marked decrease of efficiency. In this report, the relationship between perovskite composition and device thermal stability is examined. It is revealed that Rb can suppress the growth of PbI2 even under PbI2 -rich conditions and decreasing the Br ratio in the perovskite absorber layer can prevent the generation of unwanted RbBr-based aggregations. The optimized device achieved by engineering perovskite composition exhibits 92% power conversion efficiency retention in a stress test conducted at 85 °C/85% relative humidity (RH) according to an international standard (IEC 61215) while exceeding 20% power conversion efficiency (certified efficiency of 20.8% at 1 cm2 ). These results reveal the great potential for the practical use of perovskite solar cells in the near future.

6.
Microscopy (Oxf) ; 67(1): 18-29, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29340607

ABSTRACT

Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.

7.
Phys Chem Chem Phys ; 20(3): 1373-1380, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29271430

ABSTRACT

Recently, organic-inorganic halide perovskites have received attention for applications in solar cells. Measurements of high-quality single crystals reveal lower defect densities and longer carrier lifetimes than those of conventional thin films, which result in improved electrical and optical properties. However, single crystal surfaces are sensitive to exposure to ambient conditions, and degrade under long-term storage in air. The surface also shows differences from the bulk in terms of its optical and electronic characteristics. For a heterojunction device, the interface at the single crystal is important. Understanding the difference between the surface and bulk properties offers insights into device design. Here, we prepared non-sliced and sliced formamidinium lead iodide (FAPbI3; FA+ = HC(NH2)2+) single crystals with a bandgap of 1.4 eV, which matches well with the requirements for solar cell photoabsorption layers. We evaluate the energy level diagrams of the surface and bulk regions, respectively. Our data indicate that the valence band maximum of the surface region is at a higher energy level than that of the bulk region. We also discuss hypotheses for the well-known and unexplained phenomena (multiple bandgaps and bandgap narrowing) seen in the absorption and photoluminescence spectra of single crystals. We conclude that these effects are likely caused by a combination of the degraded surface, Rashba-splitting in bulk, and self-absorption by the single crystal itself.

8.
Materials (Basel) ; 10(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035336

ABSTRACT

To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the carbon coated YAG:Ce3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce3+ is the highest when heated at 1650 °C, while a blue emission at 400-420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD) that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce3+-1500 °C, which disappear in C@YAG:Ce3+-1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce3+ emission and the presence of the blue emission observed for C@YAG:Ce3+-1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce3+ phosphors, which is related to a reaction between C and YAG:Ce3+ in N2 atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N2 atmosphere.

9.
Microscopy (Oxf) ; 66(2): 95-102, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27940608

ABSTRACT

Surface defects with intrinsic origins in an epitaxial layer on 4H-SiC wafers were observed by scanning electron microscopy. Commercially available 4H-SiC epitaxial wafers with 4° or 8° off-axis angles from the [0001] direction toward the [112¯0] direction were used in this experiment. Various types of defects, including micropipes, pits, carrots, stacking faults and wide terrace and high step structures, were observed and clearly identified. The defects are presented as a catalog that can be used in the identification of surface defects.

10.
Microscopy (Oxf) ; 66(2): 103-109, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27940609

ABSTRACT

Surface defects on 4H-SiC wafers with an epitaxial layer grown by chemical vapor deposition (CVD) were observed using scanning electron microscopy (SEM). Commercially available epitaxial-wafers with four or eight deg-off surface from the [0001] toward the [112¯0] directions were used for this experiment. 3C-SiC particles, triangular-defects, comets, obtuse-triangular-shaped-defects and micro-holes were identified in the SEM images. This paper can be considered as a catalog of SEM images and descriptions of various surface defects for 4H-SiC wafers with a CVD-grown epilayer.

11.
J Vis Exp ; (117)2016 11 15.
Article in English | MEDLINE | ID: mdl-27911365

ABSTRACT

Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL.


Subject(s)
Luminescence , Nitrogen , Electrons , Luminescent Measurements , Microscopy , Microscopy, Electron, Scanning , Particle Size
12.
Sci Rep ; 6: 28022, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27311604

ABSTRACT

Organic-based solar cells potentially offer a photovoltaic module with low production costs and low hazard risk of the components. We report organic dye-sensitized solar cells, fabricated with molecular designed indoline dyes in conjunction with highly reactive but robust nitroxide radical molecules as redox mediator in a quasi-solid gel form of the electrolyte. The cells achieve conversion efficiencies of 10.1% at 1 sun, and maintain the output performance even under interior lighting. The indoline dyes, customized by introducing long alkyl chains, specifically interact with the radical mediator to suppress a charge-recombination process at the dye interface. The radical mediator also facilitates the charge-transport with remarkably high electron self-exchange rate even in the quasi-solid state electrolyte to lead to a high fill factor.

13.
Phys Chem Chem Phys ; 18(18): 12494-504, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27086764

ABSTRACT

A red phosphor of Sr2Si5N8:Eu(2+) powder was synthesized by a solid state reaction. The synthesized phosphor was thermally post-treated in an inert and reductive N2-H2 mixed-gas atmosphere at 300-1200 °C. The main phase of the resultant phosphor was identified as Sr2Si5N8. A passivation layer of ∼0.2 µm thickness was formed around the phosphor surface via thermal treatment. Moreover, two different luminescence centers of Eu(SrI) and Eu(SrII) in the synthesized Sr2Si5N8:Eu(2+) phosphor were proposed to be responsible for 620 nm and 670 nm emissions, respectively. More interestingly, thermal- and moisture-induced degradation of PL intensity was effectively reduced by the formation of a passivation layer around the phosphor surface, that is, the relative PL intensity recovered 99.8% of the initial intensity even after encountering thermal degradation; both moisture-induced degraded external and internal QEs were merely 1% of the initial QEs. The formed surface layer was concluded to primarily prevent the Eu(2+) activator from being oxidized, based on the systemic analysis of the mechanisms of thermal- and moisture-induced degradation.

14.
Nat Commun ; 7: 10609, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26881966

ABSTRACT

Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1-100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics.

15.
Nanoscale ; 8(6): 3694-703, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26815407

ABSTRACT

(GaN)1-x(ZnO)x solid-solution nanostructures with superior crystallinity, large surface areas and visible light absorption have been regarded as promising photocatalysts for overall water splitting to produce H2. In this work, we report the preparation of (GaN)1-x(ZnO)x solid-solution nanorods with a high ZnO solubility up to 95% via a two-step synthetic route, which starts from a sol-gel reaction and follows with a nitridation process. Moreover, we clearly demonstrated that the crystallographic facets of (GaN)1-x(ZnO)x solid-solution nanorods can be finely tailored from non-polar {10̄10} to semipolar {10̄11} and then finally to mixed {10̄1} and polar {000̄1} by carefully controlling the growth temperature and nitridation time. Correspondingly, the ZnO content in the GaN lattice can be achieved in the range of ∼25%-95%. Room-temperature cathodoluminescence (CL) measurements on the three types of (GaN)1-x(ZnO)x solid-solution nanorods indicate that the minimum band-gap of 2.46 eV of the solid-solution nanorods is achieved under a ZnO solubility of 25%. The efficiency and versatility of our strategy in the band-gap and facet engineering of (GaN)1-x(ZnO)x solid-solution nanorods will enhance their promising photocatalytic utilizations like an overall water splitting for H2 production under visible-light irradiation.

16.
Nanoscale Res Lett ; 10(1): 459, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625883

ABSTRACT

InGaN/GaN multi-quantum wells (MQWs) are grown on (0001) sapphire substrates by metal organic chemical vapor deposition (MOCVD) with special growth parameters to form V-shaped pits simultaneously. Measurements by atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrate the formation of MQWs on both (0001) and ([Formula: see text]) side surface of the V-shaped pits. The latter is known to be a semi-polar surface. Optical characterizations together with theoretical calculation enable us to identify the optical transitions from these MQWs. The layer thickness on ([Formula: see text]) surface is smaller than that on (0001) surface, and the energy level in the ([Formula: see text]) semi-polar quantum well (QW) is higher than in the (0001) QW. As the sample temperature is increased from 15 K, the integrated cathodoluminescence (CL) intensity of (0001) MQWs increases first and then decreases while that of the ([Formula: see text]) MQWs decreases monotonically. The integrated photoluminescence (PL) intensity of (0001) MQWs increases significantly from 15 to 70 K. These results are explained by carrier injection from ([Formula: see text]) to (0001) MQWs due to thermal excitation. It is therefore concluded that the emission efficiency of (0001) MQWs at high temperatures can be greatly improved due to the formation of semi-polar MQWs.

17.
Inorg Chem ; 54(18): 9188-94, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26334192

ABSTRACT

Prismatic single crystals of novel compounds BaLaSi2 and Ba5LaSi6 were synthesized from the elements with or without a Na flux. The crystal structures of the compounds were analyzed by X-ray diffraction. BaLaSi2, containing cis­trans ∞1[Si] chains, crystallizes in an orthorhombic cell (a = 4.6414(2) Å, b = 14.8851(7) Å, c = 6.7519(5) Å; space group, Cmcm (No. 63), Z = 4) and is isotypic with the low-temperature phase of LaSi. The crystal structure of Ba5LaSi6 (a = 17.1447(5) Å, b = 4.8767(1) Å, and c = 17.9102(4) Å; space group Pnma (No. 62), Z = 4) is a new type containing isolated anionic groups (0[Si5­Si]) of a pentagonal Si ring with a Si­Si stem. The electrical resistivities measured for the polycrystalline BaLaSi2 and Ba5LaSi6 sintered samples were 0.31 and 0.48 mΩ·cm, respectively, at 300 K and increased with temperature. The Seebeck coefficients of BaLaSi2 and Ba5LaSi6 were −7.6 and −11 µV·K­1, respectively, at 296 K.

18.
Inorg Chem ; 54(11): 5556-65, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25993116

ABSTRACT

A series of Eu(2+)- and Mn(2+)-codoped γ-AlON (Al1.7O2.1N0.3) phosphors was synthesized at 1800 °C under 0.5 MPa N2 by using the gas-pressure sintering method (GPS). Eu(2+) and Mn(2+) ions were proved to enter into γ-AlON host lattice by means of XRD, CL, and EDS measurements. Under 365 nm excitation, two emission peaks located at 472 and 517 nm, resulting from 4f(6)5d(1) → 4f(7) and (4)T1(4G) → (6)A1 electron transitions of Eu(2+) and Mn(2+), respectively, can be observed. Energy transfer from Eu(2+) to Mn(2+) was evidenced by directly observing appreciable overlap between the excitation spectrum of Mn(2+) and the emission spectrum of Eu(2+) as well as by the decreased decay time of Eu(2+) with increasing Mn(2+) concentration. The critical energy-transfer distance between Eu(2+) and Mn(2+) and the energy-transfer efficiency were also calculated. The mechanism of energy transfer was identified as a resonant type via a dipole-dipole mechanism. The external quantum efficiency was increased 7 times (from 7% for γ-AlON:Mn(2+) to 49% for γ-AlON:Mn(2+),Eu(2+) under 365 nm excitation), and color-tunable emissions from blue-green to green-yellow were also realized with the Eu(2+) → Mn(2+) energy transfer in γ-AlON.

19.
Sci Rep ; 5: 10087, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25976071

ABSTRACT

By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model.

20.
ACS Nano ; 9(3): 2989-3001, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25689728

ABSTRACT

Modern field-effect transistors or laser diodes take advantages of band-edge structures engineered by large uniaxial strain εzz, available up to an elasticity limit at a rate of band-gap deformation potential azz (= dEg/dεzz). However, contrary to aP values under hydrostatic pressure, there is no quantitative consensus on azz values under uniaxial tensile, compressive, and bending stress. This makes band-edge engineering inefficient. Here we propose SEM-cathodoluminescence nanospectroscopy under in situ nanomanipulation (Nanoprobe-CL). An apex of a c-axis-oriented free-standing ZnO nanorod (NR) is deflected by point-loading of bending stress, where local uniaxial strain (εcc = r/R) and its gradient across a NR (dεcc/dr = R(-1)) are controlled by a NR local curvature (R(-1)). The NR elasticity limit is evaluated sequentially (εcc = 0.04) from SEM observation of a NR bending deformation cycle. An electron beam is focused on several spots crossing a bent NR, and at each spot the local Eg is evaluated from near-band-edge CL emission energy. Uniaxial acc (= dEg/dεcc) is evaluated at regulated surface depth, and the impact of R(-1) on observed acc is investigated. The acc converges with -1.7 eV to the R(-1) = 0 limit, whereas it quenches with increasing R(-1), which is attributed to free-exciton drift under transversal band-gap gradient. Surface-sensitive CL measurements suggest that a discrepancy from bulk acc = -4 eV may originate from strain relaxation at the side surface under uniaxial stress. The nanoprobe-CL technique reveals an Eg(εij) response to specific strain tensor εij (i, j = x, y, z) and strain-gradient effects on a minority carrier population, enabling simulations and strain-dependent measurements of nanodevices with various structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...