Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(2): 308-322, 2024 01.
Article in English | MEDLINE | ID: mdl-37700610

ABSTRACT

d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.


Subject(s)
Escherichia coli , Glycine Hydroxymethyltransferase , Animals , Humans , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Tetrahydrofolates , Methyltransferases , Serine , Hydro-Lyases/genetics , Mammals/metabolism
2.
FEMS Microbiol Lett ; 369(1)2022 11 17.
Article in English | MEDLINE | ID: mdl-36214408

ABSTRACT

Noncanonical D-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria. Previously, we identified amino acid racemases with broad substrate specificity, including YgeA from Escherichia coli, which strongly prefers homoserine as a substrate. In this study, we investigated the functions of this enzyme in vivo. When wild-type and ygeA-deficient E. coli strains were cultured in minimal medium containing D-homoserine, the D-homoserine level was significantly higher in the ygeA-deficient strain than in the wild-type strain, in which it was almost undetectable. Additionally, D-homoserine was detected in YgeA-expressed E. coli cells cultured in minimal medium containing L-homoserine. The growth of the ygeA-deficient strain was significantly impaired in minimal medium with or without supplemental D-homoserine, while L-methionine, L-threonine or L-isoleucine, which are produced via L-homoserine, restored the growth impairment. Furthermore, the wild-type strain formed biofilms significantly more efficiently than the ygeA-deficient strain. Addition of L- or D-homoserine significantly suppressed biofilm formation in the wild-type strain, whereas this addition had no significant effect in the ygeA-deficient strain. Together, these data suggest that YgeA acts as an amino acid racemase and plays a role in L- and D-homoserine metabolism in E. coli.


Subject(s)
Escherichia coli , Homoserine , Homoserine/metabolism , Amino Acids/metabolism , Threonine/metabolism , Biofilms
3.
Biosci Biotechnol Biochem ; 86(11): 1536-1542, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36085174

ABSTRACT

Various d-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for d-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine ß-lyase possesses amino acid racemase activity in addition to ß-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares a relatively high amino acid sequence identity with cystathionine ß-lyase. The enzyme did not show racemase activity toward various amino acids including alanine and lyase and dehydratase activities were highest toward l-cystathionine and l-homoserine, respectively. The enzyme also showed weak activity toward l-cysteine and l-serine but no activity toward d-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.


Subject(s)
Amino Acid Isomerases , Lyases , Humans , Animals , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/metabolism , Amino Acids , Cystathionine , Cysteine , Homoserine , Lyases/metabolism , Escherichia coli/metabolism , Serine , Racemases and Epimerases , Alanine , Hydro-Lyases , Mammals/metabolism
4.
FEBS J ; 289(19): 5933-5946, 2022 10.
Article in English | MEDLINE | ID: mdl-35377552

ABSTRACT

The hyperthermophilic bacterium Thermotoga maritima has an atypical peptidoglycan that contains d-lysine alongside the usual d-alanine and d-glutamate. We previously identified a lysine racemase involved in d-lysine biosynthesis, and this enzyme also possesses alanine racemase activity. However, T. maritima has neither alanine racemase nor glutamate racemase enzymes; hence, the precise biosynthetic pathways of d-alanine and d-glutamate remain unclear in T. maritima. In the present study, we identified and characterized a novel d-amino acid aminotransferase (TM0831) in T. maritima. TM0831 exhibited aminotransferase activity towards 23 d-amino acids, but did not display activity towards l-amino acids. It displayed high specific activities towards d-homoserine and d-glutamine as amino donors. The most preferred acceptor was 2-oxoglutarate, followed by glyoxylate. Additionally, TM0831 displayed racemase activity towards four amino acids including aspartate and glutamate. Catalytic efficiency (kcat /Km ) for aminotransferase activity was higher than for racemase activity, and pH profiles were distinct between these two activities. To evaluate the functions of TM0831, we constructed a TTHA1643 (encoding glutamate racemase)-deficient Thermus thermophilus strain (∆TTHA1643) and integrated the TM0831 gene into the genome of ∆TTHA1643. The growth of this TM0831-integrated strain was promoted compared with ∆TTHA1643 and was restored to almost the same level as that of the wild-type strain. These results suggest that TM0831 is involved in d-glutamate production. TM0831 is a novel d-amino acid aminotransferase with racemase activity that is involved in the production of d-amino acids in T. maritima.


Subject(s)
Alanine Racemase , Amino Acids , Alanine/genetics , Alanine/metabolism , Alanine Racemase/metabolism , Amino Acids/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Biosynthetic Pathways , Glutamic Acid/metabolism , Glutamine/metabolism , Glyoxylates , Homoserine/metabolism , Ketoglutaric Acids , Lysine/genetics , Lysine/metabolism , Peptidoglycan/metabolism , Thermotoga maritima/genetics , Transaminases/genetics , Transaminases/metabolism
5.
FEBS Lett ; 595(23): 2931-2941, 2021 12.
Article in English | MEDLINE | ID: mdl-34747014

ABSTRACT

The hyperthermophilic bacterium Thermotoga maritima peptidoglycan contains unusual d-lysine alongside typical d-alanine and d-glutamate. We previously identified lysine racemase and threonine dehydratase, but knowledge of d-amino acid metabolism remains limited. Herein, we identified and characterized T. maritima acetylornithine aminotransferase TM1785. The enzyme was most active towards acetyl-l-ornithine, but also utilized l-glutamate, l-ornithine and acetyl-l-lysine as amino donors, and 2-oxoglutarate was the preferred amino acceptor. TM1785 also displayed racemase activity towards four amino acids and lyase activity towards l-cysteine, but no dehydratase activity towards l-serine, l-threonine or corresponding d-amino acids. Catalytic efficiency (kcat /Km ) was highest for aminotransferase activity and lowest for racemase activity. TM1785 is a novel acetylornithine aminotransferase associated with l-arginine biosynthesis that possesses two additional distinct activities.


Subject(s)
Bacterial Proteins/metabolism , Thermotoga maritima/enzymology , Transaminases/metabolism , Bacterial Proteins/chemistry , Cysteine/metabolism , Enzyme Stability , Glutamic Acid/metabolism , Kinetics , Ornithine/metabolism , Serine/metabolism , Substrate Specificity , Transaminases/chemistry
6.
J Cell Biochem ; 122(11): 1639-1652, 2021 11.
Article in English | MEDLINE | ID: mdl-34289161

ABSTRACT

Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.


Subject(s)
Alcohol Oxidoreductases/metabolism , Aspartic Acid/metabolism , Alcohol Oxidoreductases/genetics , Aspartic Acid/pharmacology , Cell Death/drug effects , Cell Death/genetics , Cell Survival/drug effects , D-Aspartate Oxidase/antagonists & inhibitors , D-Aspartate Oxidase/genetics , D-Aspartate Oxidase/metabolism , Glyoxylates/metabolism , Glyoxylates/pharmacology , HEK293 Cells , HeLa Cells , Humans , NADP , Pyruvates/metabolism , Pyruvates/pharmacology
7.
Amino Acids ; 53(6): 903-915, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938999

ABSTRACT

The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual component, D-lysine (D-Lys), in addition to the typical D-alanine (D-Ala) and D-glutamate (D-Glu). In a previous study, we identified a Lys racemase that is presumably associated with D-Lys biosynthesis. However, our understanding of D-amino acid metabolism in T. maritima and other bacteria remains limited, although D-amino acids in the peptidoglycan are crucial for preserving bacterial cell structure and resistance to environmental threats. Herein, we characterized enzymatic and structural properties of TM0356 that shares a high amino acid sequence identity with serine (Ser) racemase. The results revealed that TM0356 forms a tetramer with each subunit containing a pyridoxal 5'-phosphate as a cofactor. The enzyme did not exhibit racemase activity toward various amino acids including Ser, and dehydratase activity was highest toward L-threonine (L-Thr). It also acted on L-Ser and L-allo-Thr, but not on the corresponding D-amino acids. The catalytic mechanism did not follow typical Michaelis-Menten kinetics; it displayed a sigmoidal dependence on substrate concentration, with highest catalytic efficiency (kcat/K0.5) toward L-Thr. Interestingly, dehydratase activity was insensitive to allosteric regulators L-valine and L-isoleucine (L-Ile) at low concentrations, while these L-amino acids are inhibitors at high concentrations. Thus, TM0356 is a biosynthetic Thr dehydratase responsible for the conversion of L-Thr to α-ketobutyrate and ammonia, which is presumably involved in the first step of the biosynthesis of L-Ile.


Subject(s)
Bacterial Proteins/chemistry , Thermotoga maritima/enzymology , Threonine Dehydratase/chemistry , Bacterial Proteins/genetics , Protein Domains , Thermotoga maritima/genetics , Threonine Dehydratase/genetics
8.
Biochem J ; 477(21): 4221-4241, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33079132

ABSTRACT

Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.


Subject(s)
Amino Acid Isomerases/metabolism , L-Serine Dehydratase/metabolism , Amino Acids/metabolism , Animals , DNA, Complementary/metabolism , Escherichia coli/metabolism , Glutamic Acid/metabolism , Humans
9.
J Neurosci ; 40(39): 7531-7544, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32855271

ABSTRACT

d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.


Subject(s)
Alanine/pharmacology , Caenorhabditis elegans Proteins/metabolism , Feeding Behavior , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/pharmacology , Alanine/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/physiology , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/metabolism , Movement , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Serine/metabolism
10.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140531, 2020 12.
Article in English | MEDLINE | ID: mdl-32853769

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS: Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS: Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS: Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE: Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.


Subject(s)
Autism Spectrum Disorder/metabolism , D-Aspartic Acid/metabolism , Animals , Autism Spectrum Disorder/etiology , Biomarkers , Brain/metabolism , Chromatography, High Pressure Liquid , D-Aspartic Acid/blood , Disease Models, Animal , Gene Expression , Hippocampus/metabolism , Mice , Mice, Transgenic , Prefrontal Cortex/metabolism
11.
Anal Biochem ; 605: 113838, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32702438

ABSTRACT

In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.


Subject(s)
Colorimetry/methods , Hydro-Lyases/analysis , Animals , Cells, Cultured , Fibroblasts , Mice , Sensitivity and Specificity
12.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140442, 2020 08.
Article in English | MEDLINE | ID: mdl-32376478

ABSTRACT

d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/chemistry , D-Aspartate Oxidase/chemistry , D-Aspartic Acid/chemistry , Flavin-Adenine Dinucleotide/chemistry , Glutamic Acid/chemistry , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cloning, Molecular , D-Aspartate Oxidase/genetics , D-Aspartate Oxidase/metabolism , D-Aspartic Acid/metabolism , Enzyme Assays , Escherichia coli/genetics , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamic Acid/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Species Specificity , Substrate Specificity
13.
Amino Acids ; 52(3): 487-497, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32108264

ABSTRACT

Bacteria produce various D-amino acids, including non-canonical D-amino acids, to adapt to environmental changes and overcome a variety of threats. These D-amino acids are largely utilized as components of peptidoglycan, and they promote peptidoglycan remodeling and biofilm disassembly. The biosynthesis, maturation, and recycling of peptidoglycan are catalyzed by penicillin-binding proteins (PBPs). However, although non-canonical D-amino acids are known to be incorporated into peptidoglycan, the maturation and recycling of peptidoglycan containing such residues remain uncharacterized. Therefore, we investigated whether PBP4 and PBP5, low molecular mass (LMM) PBPs from Escherichia coli and Bacillus subtilis, are involved in these events of peptidoglycan metabolism. Enzyme assays using p-nitroaniline (pNA)-derivatized D-amino acids and peptidoglycan-mimicking peptides revealed that PBP4 and PBP5 from both species have peptidase activity toward substrates containing D-Asn, D-His, or D-Trp. These D-amino acids slowed the growth of dacA- or dacB-deficient E. coli (∆dacA or ∆dacB) relative to the wild-type strain. Additionally, these D-amino acids affected biofilm formation by the ∆dacB strain. Collectively, PBP4 and PBP5 are involved in the cleavage of peptidoglycan containing non-canonical D-amino acids, and these properties affect growth and biofilm formation.


Subject(s)
Amino Acids/metabolism , Escherichia coli Proteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Amino Acids/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Biofilms/growth & development , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/genetics , Peptidoglycan/chemistry , Serine-Type D-Ala-D-Ala Carboxypeptidase/chemistry , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics
14.
FEBS J ; 286(1): 124-138, 2019 01.
Article in English | MEDLINE | ID: mdl-30387556

ABSTRACT

d-Aspartate oxidase (DDO) is a degradative enzyme that acts stereospecifically on free acidic D-amino acids such as d-aspartate and d-glutamate. d-Aspartate plays an important role in regulating neurotransmission, developmental processes, hormone secretion, and reproductive functions in mammals. In contrast, the physiological role of d-glutamate in mammals remains unclear. In Caenorhabditis elegans, the enzyme responsible for in vivo metabolism of d-glutamate is DDO-3, one of the three DDO isoforms, which is also required for normal self-fertility, hatching, and lifespan. In general, eukaryotic DDOs localize to subcellular peroxisomes in a peroxisomal targeting signal type 1 (PTS1)-dependent manner. However, DDO-3 does not contain a PTS1, but instead has a putative N-terminal signal peptide (SP). In this study, we found that DDO-3 is a secreted DDO, the first such enzyme to be described in eukaryotes. In hermaphrodites, DDO-3 was secreted from the proximal gonadal sheath cells in a SP-dependent manner and transferred to the oocyte surface. In males, DDO-3 was secreted from the seminal vesicle into the seminal fluid in a SP-dependent manner during mating with hermaphrodites. In both sexes, DDO-3 was secreted from the cells where it was produced into the body fluid and taken up by scavenger coelomocytes. Full-length DDO-3 transgene rescued all phenotypes elicited by the deletion of ddo-3, whereas a DDO-3 transgene lacking the putative SP did not. Together, these results indicate that secretion of DDO-3 is essential for its physiological functions.


Subject(s)
Aspartic Acid/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/growth & development , D-Aspartate Oxidase/metabolism , Embryo, Nonmammalian/cytology , Reproduction , Animals , Caenorhabditis elegans/embryology , D-Aspartate Oxidase/genetics , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/physiology , Fertility , Longevity , Mammals , Nose/physiology
15.
FEBS J ; 286(3): 601-614, 2019 02.
Article in English | MEDLINE | ID: mdl-30548096

ABSTRACT

Various d-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria, suggesting that these compounds are necessary for successful adaptation to environmental changes. In addition to the conventional d-alanine (d-Ala) and d-glutamate, the peptidoglycan of the hyperthermophilic bacterium Thermotoga maritima contains both l-lysine (l-Lys) and d-Lys, but not meso-diaminopimelate (meso-Dpm). d-Lys is an uncommon component of peptidoglycan, and its biosynthetic pathway remains unclear. In this study, we identified and characterized a novel Lys racemase (TM1597) and Dpm epimerase (TM1522) associated with the d-Lys biosynthetic pathway in T. maritima. The Lys racemase had a dimeric structure containing pyridoxal 5'-phosphate as a cofactor. Among the amino acids, it exhibited the highest racemase activity toward d- and l-Lys, and also had relatively high activity toward d- and l-enantiomers of ornithine and Ala. The Dpm epimerase had the highest epimerization activity toward ll- and meso-Dpm, and also measurably racemized certain amino acids, including Lys. These results suggest that Lys racemase contributes to production of d-Lys and d-Ala for use as peptidoglycan components, and that Dpm epimerase converts ll-Dpm to meso-Dpm, a precursor in the l-Lys biosynthetic pathway.


Subject(s)
Amino Acid Isomerases/metabolism , Cell Wall/enzymology , Gene Expression Regulation, Bacterial , Lysine/biosynthesis , Thermotoga maritima/enzymology , Alanine/chemistry , Alanine/metabolism , Amino Acid Isomerases/genetics , Amino Acid Sequence , Cell Wall/chemistry , Cloning, Molecular , Coenzymes/chemistry , Coenzymes/metabolism , Enzyme Assays , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Metabolic Networks and Pathways , Ornithine/chemistry , Ornithine/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Protein Multimerization , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Stereoisomerism , Substrate Specificity , Thermotoga maritima/chemistry , Thermotoga maritima/genetics
16.
Arch Biochem Biophys ; 654: 10-18, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30003876

ABSTRACT

d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.


Subject(s)
Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Animals , Catalysis , Dimerization , Electrophoresis, Polyacrylamide Gel , Glutamic Acid/metabolism , Hydro-Lyases/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Manganese/metabolism , Mice , Mitochondria/metabolism , Proline/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
17.
Biochem J ; 475(8): 1397-1410, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29592871

ABSTRACT

Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine ß-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine ß-lyase is a multifunctional enzyme with three different activities.


Subject(s)
Escherichia coli/enzymology , Lyases/metabolism , Methionine/metabolism , Serine/metabolism , Kinetics , Lyases/genetics , Substrate Specificity
18.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 806-812, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29292239

ABSTRACT

d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia, as well as chronic pain. Thus, appropriate regulation of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Accordingly, much attention has been paid to the role(s) of DDO in the metabolism of d-aspartate in vivo, and the physiological functions of DDO have been actively investigated using experimental rats and mice. However, detailed characterisation of rat DDO has not yet been performed, and little is known about species-specific differences in the properties of mammalian DDOs. In this study, the structural and enzymatic properties of purified recombinant rat, mouse and human DDOs were examined and compared. The results showed that rat DDO is more similar to human DDO than to mouse DDO. This work provides useful insight into the use of rats as an experimental model for investigating the biological significance of human DDO and/or d-aspartate. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Subject(s)
D-Aspartate Oxidase/metabolism , Animals , Aspartic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Rats , Receptors, N-Methyl-D-Aspartate/drug effects , Species Specificity , Stereoisomerism , Temperature
19.
Amino Acids ; 49(11): 1885-1894, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28894939

ABSTRACT

The peptidoglycan layer of the bacterial cell wall typically contains D-alanine (D-Ala) and D-glutamic acid (D-Glu), and also various non-canonical D-amino acids that have been linked to peptidoglycan remodeling, inhibition of biofilm formation, and triggering of biofilm disassembly. Bacteria produce D-amino acids when adapting to environmental changes as a common survival strategy. In our previous study, we detected non-canonical D-amino acids in Escherichia coli grown in minimal medium. However, the biosynthetic pathways of non-canonical D-amino acids remain poorly understood. In the present study, we identified amino acid racemases in E. coli MG1655 (YgeA) and Bacillus subtilis (RacX) that produce non-canonical D-amino acids other than D-Ala and D-Glu. We characterized their enzymatic properties, and both displayed broad substrate specificity but low catalytic activity. YgeA preferentially catalyzes the racemization of homoserine, while RacX preferentially racemizes arginine, lysine, and ornithine. RacX is dimeric, and appears not to require pyridoxal 5'-phosphate (PLP) as a coenzyme as is the case with YgeA. To our knowledge, this is the first report on PLP-independent amino acid racemases possessing broad substrate specificity in E. coli and B. subtilis.


Subject(s)
Amino Acid Isomerases/chemistry , Amino Acid Isomerases/metabolism , Amino Acids/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/enzymology , Amino Acid Isomerases/analysis , Amino Acid Isomerases/isolation & purification , Amino Acids/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Catalytic Domain , Isomerism , Kinetics , Models, Molecular , Protein Conformation , Protein Structure, Quaternary , Substrate Specificity
20.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1129-1140, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28629864

ABSTRACT

d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia and in chronic pain. Thus, appropriate regulation of the amount of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Herein, the effects of the non-synonymous single nucleotide polymorphisms (SNPs) R216Q and S308N on several properties of human DDO were examined. Analysis of the purified recombinant enzyme showed that the R216Q and S308N substitutions reduce enzyme activity towards acidic d-amino acids, decrease the binding affinity for the coenzyme flavin adenine dinucleotide and decrease the temperature stability. Consistent with these findings, further experiments using cultured mammalian cells revealed elevated d-aspartate in cultures of R216Q and S308N cells compared with cells expressing wild-type DDO. Furthermore, accumulation of several amino acids other than d-aspartate also differed between these cultures. Thus, expression of DDO genes carrying the R216Q or S308N SNP substitutions may increase the d-aspartate content in humans and alter homeostasis of several other amino acids. This work may aid in understanding the correlation between DDO activity and the risk of onset of NMDA receptor-related diseases.


Subject(s)
D-Aspartate Oxidase/chemistry , Polymorphism, Single Nucleotide , Amino Acid Substitution , Amino Acids/metabolism , Animals , Aspartic Acid/metabolism , Cell Line, Tumor , D-Aspartate Oxidase/genetics , D-Aspartate Oxidase/metabolism , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Antagonists/metabolism , Flavin-Adenine Dinucleotide/metabolism , Humans , Models, Molecular , Mutagenesis, Site-Directed , Pituitary Neoplasms/pathology , Protein Binding , Protein Conformation , Rats , Receptors, N-Methyl-D-Aspartate/physiology , Recombinant Proteins/chemistry , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...