Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 181: 115-119, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35533772

ABSTRACT

Mechanical allodynia (pain caused by innocuous mechanical stimulation) is a hallmark symptom of neuropathic pain occurring following peripheral nerve injury (PNI). Using a transgenic mouse line, in which myelinated primary afferents, including Aß fibers, express channelrhodopsin-2, we found that illumination of the plantar skin of mice following PNI produced an Aß fiber-mediated pain-like withdrawal behavior and increased c-FOS+ neurons in the superficial spinal dorsal horn (SDH). These two responses were attenuated by chemogenetic silencing of primary sensory cortex (S1) neurons projecting directly to the SDH. These findings indicate that spinally projecting cortical S1 neurons contribute to Aß fiber-derived neuropathic allodynia.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Hyperalgesia , Mice , Mice, Transgenic , Neuralgia/etiology , Neurons , Peripheral Nerve Injuries/complications , Spinal Cord Dorsal Horn
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431693

ABSTRACT

A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aß fibers. However, the mechanism by which Aß fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aß fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aß fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aß fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aß fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aß fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.


Subject(s)
Interneurons/physiology , Neuralgia/genetics , Spinal Cord Dorsal Horn/physiology , Touch Perception/physiology , Animals , Hyperalgesia/genetics , Hyperalgesia/pathology , Male , Mechanoreceptors/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Nociception/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/physiopathology , Posterior Horn Cells/metabolism , Posterior Horn Cells/pathology , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Spinal Cord Dorsal Horn/pathology , Touch/physiology , Touch Perception/genetics , gamma-Aminobutyric Acid/metabolism
3.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29468190

ABSTRACT

Neuropathic pain is caused by peripheral nerve injury (PNI). One hallmark symptom is allodynia (pain caused by normally innocuous stimuli), but its mechanistic underpinning remains elusive. Notably, whether selective stimulation of non-nociceptive primary afferent Aß fibers indeed evokes neuropathic pain-like sensory and emotional behaviors after PNI is unknown, because of the lack of tools to manipulate Aß fiber function in awake, freely moving animals. In this study, we used a transgenic rat line that enables stimulation of non-nociceptive Aß fibers by a light-activated channel (channelrhodopsin-2; ChR2). We found that illuminating light to the plantar skin of these rats with PNI elicited pain-like withdrawal behaviors that were resistant to morphine. Light illumination to the skin of PNI rats increased the number of spinal dorsal horn (SDH) Lamina I neurons positive to activity markers (c-Fos and phosphorylated extracellular signal-regulated protein kinase; pERK). Whole-cell recording revealed that optogenetic Aß fiber stimulation after PNI caused excitation of Lamina I neurons, which were normally silent by this stimulation. Moreover, illuminating the hindpaw of PNI rats resulted in activation of central amygdaloid neurons and produced an aversion to illumination. Thus, these findings provide the first evidence that optogenetic activation of primary afferent Aß fibers in PNI rats produces excitation of Lamina I neurons and neuropathic pain-like behaviors that were resistant to morphine treatment. This approach may provide a new path for investigating circuits and behaviors of Aß fiber-mediated neuropathic allodynia with sensory and emotional aspects after PNI and for discovering novel drugs to treat neuropathic pain.


Subject(s)
Emotions/physiology , Neuralgia/physiopathology , Neuralgia/psychology , Neurons, Afferent/physiology , Spinal Nerves/injuries , Animals , Avoidance Learning/physiology , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Conditioning, Psychological/physiology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Ganglia, Spinal/pathology , Ganglia, Spinal/physiopathology , Lumbar Vertebrae , Male , Neuralgia/etiology , Neuralgia/pathology , Neurons, Afferent/pathology , Optogenetics/methods , Patch-Clamp Techniques , Proto-Oncogene Proteins c-fos/metabolism , Rats, Transgenic , Skin/physiopathology , Spinal Nerves/pathology , Spinal Nerves/physiopathology , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...