Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(6): e17351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837306

ABSTRACT

The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.


La Terre fonctionne comme un système intégré­son habitabilité pour une vie complexe est une propriété émergente qui dépend des interactions entre les composantes biologiques, chimiques et physiques. Le réchauffement climatique affecte la structure et la fonction des écosystèmes, et en retour, la biosphère affecte également le climat en modifiant la composition des gaz atmosphériques et l'albédo planétaire. Il est essentiel de quantifier ces rétroactions entre les écosystèmes et le climat afin de prédire avec précision les changements futurs et élaborer des stratégies d'atténuation; cependant, l'interaction entre les processus écologiques complique l'évaluation de leurs impacts. Dans cet article, nous examinons l'état des connaissances sur la façon dont les processus écologiques et biologiques (par exemple, la concurrence, les interactions trophiques, le métabolisme, l'adaptation) affectent la directionnalité et l'ampleur des rétroactions entre les écosystèmes et le climat à l'aide d'exemples issus du monde aquatique. Nous soutenons que, malgré les nombreuses preuves de l'importance de plusieurs de ces rétroactions, notre compréhension limitée des effets additifs des processus écosystémiques empêche de faire une quantification robuste de la plupart des rétroactions climatiques d'origine écologique. Circonscrire ces effets doit être une priorité pour les sciences aquatiques, car ce n'est qu'en étudiant la biosphère en tant que sujet et arbitre du climat planétaire que nous pourrons développer une vision suffisamment holistique du système terrestre pour prédire avec précision l'avenir de la Terre et élucider son passé.


Subject(s)
Climate Change , Ecosystem , Aquatic Organisms/physiology
2.
Sci Rep ; 14(1): 1902, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253574

ABSTRACT

Copper (Cu) is a cofactor in numerous key proteins and, thus, an essential element for life. In biological systems, Cu isotope abundances shift with metabolic and homeostatic state. However, the mechanisms underpinning these isotopic shifts remain poorly understood, hampering use of Cu isotopes as biomarkers. Computational predictions suggest that isotope fractionation occurs when proteins bind Cu, with the magnitude of this effect dependent on the identity and arrangement of the coordinating amino acids. This study sought to constrain equilibrium isotope fractionation values for Cu bound by common amino acids at protein metal-binding sites. Free and bound metal ions were separated via Donnan dialysis using a cation-permeable membrane. Isotope ratios of pre- and post-dialysis solutions were measured by MC-ICP-MS following purification. Sulfur ligands (cysteine) preferentially bound the light isotope (63Cu) relative to water (Δ65Cucomplex-free = - 0.48 ± 0.18‰) while oxygen ligands favored the heavy isotope (65Cu; + 0.26 ± 0.04‰ for glutamate and + 0.16 ± 0.10‰ for aspartate). Binding by nitrogen ligands (histidine) imparted no isotope effect (- 0.01 ± 0.04‰). This experimental work unequivocally demonstrates that amino acids differentially fractionate Cu isotopes and supports the hypothesis that metalloprotein biosynthesis affects the distribution of transition metal isotopes in biological systems.


Subject(s)
Antifibrinolytic Agents , Metalloproteins , Amino Acids , Copper , Renal Dialysis , Glutamic Acid , Isotopes
3.
Water Res ; 201: 117329, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34161874

ABSTRACT

Sea level rise has increased the frequency of tidal flooding even without accompanying precipitation in many coastal areas worldwide. As the tide rises, inundates the landscape, and then recedes, it can transport organic and inorganic matter between terrestrial systems and adjacent aquatic environments. However, the chemical and biological effects of tidal flooding on urban estuarine systems remain poorly constrained. Here, we provide the first extensive quantification of floodwater nutrient concentrations during a tidal flooding event and estimate the nitrogen (N) loading to the Lafayette River, an urban tidal sub-tributary of the lower Chesapeake Bay (USA). To enable the scale of synoptic sampling necessary to accomplish this, we trained citizen-scientist volunteers to collect 190 flood water samples during a perigean spring tide to measure total dissolved N (TDN), dissolved inorganic N (DIN) and phosphate concentrations, and Enterococcus abundance from the retreating ebb tide while using a phone application to measure the extent of tidal inundation. Almost 95% of Enterococcus results had concentrations that exceeded the standard established for recreational waters (104 MPN 100 mL-1). Floodwater dissolved nutrient concentrations were higher than concentrations measured in natural estuarine waters, suggesting floodwater as a source of dissolved nutrients to the estuary. However, only DIN concentrations were statistically higher in floodwater samples than in the estuary. Using a hydrodynamic model to calculate the volume of water inundating the landscape, and the differences between the median DIN concentrations in floodwaters and the estuary, we estimate that 1,145 kg of DIN entered the Lafayette River during this single, blue sky, tidal flooding event. This amount exceeds the annual N load allocation for overland flow established by federal regulations for this segment of the Chesapeake Bay by 30%. Because tidal flooding is projected to increase in the future as sea levels continue to rise, it is crucial we quantify nutrient loading from tidal flooding in order to set realistic water quality restoration targets for tidally influenced water bodies.


Subject(s)
Bays , Nitrogen , Environmental Monitoring , Estuaries , Floods , Humans , Nitrogen/analysis , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...