Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
2.
Front Nutr ; 9: 988529, 2022.
Article in English | MEDLINE | ID: mdl-36687706

ABSTRACT

Background and aims: Maternal diet plays a key role in preventing or contributing to the development of chronic diseases, such as obesity, allergy, and brain disorders. Supplementation of maternal diet with prebiotics has been shown to reduce the risk of food allergies and affect the intestinal permeability in offspring later in life. However, its role in modulating the development of other intestinal disorders, such as colitis, remains unknown. Therefore, we investigated the effects of prebiotic supplementation in pregnant mice on the occurrence of colitis in their offspring. Materials and methods: Offspring from mothers, who were administered prebiotic galacto-oligosaccharides and inulin during gestation or fed a control diet, were subjected to three cycles of dextran sulphate sodium (DSS) treatment to induce chronic colitis, and their intestinal function and disease activity were evaluated. Colonic remodelling, gut microbiota composition, and lipidomic and transcriptomic profiles were also assessed. Results: DSS-treated offspring from prebiotic-fed mothers presented a higher disease score, increased weight loss, and increased faecal humidity than those from standard diet-fed mothers. DSS-treated offspring from prebiotic-fed mothers also showed increased number of colonic mucosal lymphocytes and macrophages than the control group, associated with the increased colonic concentrations of resolvin D5, protectin DX, and 14-hydroxydocosahexaenoic acid, and modulation of colonic gene expression. In addition, maternal prebiotic supplementation induced an overabundance of eight bacterial families and a decrease in the butyrate caecal concentration in DSS-treated offspring. Conclusion: Maternal prebiotic exposure modified the microbiota composition and function, lipid content, and transcriptome of the colon of the offspring. These modifications did not protect against colitis, but rather sensitised the mice to colitis development.

3.
Front Immunol ; 12: 712614, 2021.
Article in English | MEDLINE | ID: mdl-34335628

ABSTRACT

The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits. In this study, pregnant BALB/cJRj mice were fed either a control diet or a diet enriched in prebiotics (Galacto-oligosaccharides/Inulin). We hypothesized that galacto-oligosaccharides/inulin supplementation during gestation could modify the maternal microbiota, favoring healthy immune imprinting in the fetus. Galacto-oligosaccharides/inulin supplementation during gestation increases the abundance of Bacteroidetes and decreases that of Firmicutes in the gut microbiota, leading to increased production of fecal acetate, which was found for the first time in amniotic fluid. Prebiotic supplementation increased the abundance of regulatory B and T cells in gestational tissues and in the fetus. Interestingly, these regulatory cells remained later in life. In conclusion, prebiotic supplementation during pregnancy leads to the transmission of specific microbial and immune factors from mother to child, allowing the establishment of tolerogenic immune imprinting in the fetus that may be beneficial for infant health outcomes.


Subject(s)
Amniotic Fluid/metabolism , Dietary Supplements , Gastrointestinal Microbiome , Immune Tolerance , Prebiotics , Pregnancy, Animal , Acetates/metabolism , Animals , B-Lymphocyte Subsets/immunology , Butyrates/metabolism , Dendritic Cells/immunology , Feces/chemistry , Feces/microbiology , Female , Fetus/immunology , Humans , Inulin/administration & dosage , Inulin/pharmacology , Maternal-Fetal Exchange , Mice , Mice, Inbred BALB C , Oligosaccharides/administration & dosage , Oligosaccharides/pharmacology , Placenta/cytology , Placenta/immunology , Pregnancy , Pregnancy Outcome , Pregnancy, Animal/immunology , Pregnancy, Animal/metabolism , Prenatal Exposure Delayed Effects , Propionates/metabolism , Ribotyping , T-Lymphocyte Subsets/immunology , Uterus/cytology , Uterus/immunology
5.
Front Immunol ; 12: 745535, 2021.
Article in English | MEDLINE | ID: mdl-35069524

ABSTRACT

Food allergy is associated with alterations in the gut microbiota, epithelial barrier, and immune tolerance. These dysfunctions are observed within the first months of life, indicating that early intervention is crucial for disease prevention. Preventive nutritional strategies with prebiotics are an attractive option, as prebiotics such as galacto-oligosaccharides and inulin can promote tolerance, epithelial barrier reinforcement, and gut microbiota modulation. Nonetheless, the ideal period for intervention remains unknown. Here, we investigated whether galacto-oligosaccharide/inulin supplementation during gestation could protect offspring from wheat allergy development in BALB/cJRj mice. We demonstrated that gestational prebiotic supplementation promoted the presence of beneficial strains in the fecal microbiota of dams during gestation and partially during mid-lactation. This specific microbiota was transferred to their offspring and maintained to adulthood. The presence of B and T regulatory immune cell subsets was also increased in the lymph nodes of offspring born from supplemented mothers, suggestive of a more tolerogenic immune environment. Indeed, antenatal prebiotic supplementation reduced the development of wheat allergy symptoms in offspring. Our study thus demonstrates that prebiotic supplementation during pregnancy induces, in the offspring, a tolerogenic environment and a microbial imprint that mitigates food allergy development.


Subject(s)
Dietary Supplements , Food Hypersensitivity , Gastrointestinal Microbiome , Inulin/pharmacology , Prebiotics , Prenatal Exposure Delayed Effects , Animals , Female , Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/microbiology , Prenatal Exposure Delayed Effects/prevention & control
6.
Nutrients ; 11(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398959

ABSTRACT

Allergic diseases now affect over 30% of individuals in many communities, particularly young children, underscoring the need for effective prevention strategies in early life. These allergic conditions have been linked to environmental and lifestyle changes driving the dysfunction of three interdependent biological systems: microbiota, epithelial barrier and immune system. While this is multifactorial, dietary changes are of particular interest in the altered establishment and maturation of the microbiome, including the associated profile of metabolites that modulate immune development and barrier function. Prebiotics are non-digestible food ingredients that beneficially influence the health of the host by 1) acting as a fermentable substrate for some specific commensal host bacteria leading to the release of short-chain fatty acids in the gut intestinal tract influencing many molecular and cellular processes; 2) acting directly on several compartments and specifically on different patterns of cells (epithelial and immune cells). Nutrients with prebiotic properties are therefore of central interest in allergy prevention for their potential to promote a more tolerogenic environment through these multiple pathways. Both observational studies and experimental models lend further credence to this hypothesis. In this review, we describe both the mechanisms and the therapeutic evidence from preclinical and clinical studies exploring the role of prebiotics in allergy prevention.


Subject(s)
Hypersensitivity/microbiology , Hypersensitivity/prevention & control , Immune System/microbiology , Microbiota/immunology , Prebiotics/microbiology , Fatty Acids, Volatile/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...