Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Sleep Res ; : e14124, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124447

ABSTRACT

Surgery and general anaesthesia have deleterious effects on sleep and disrupted perioperative sleep health is a risk factor for poor surgical outcomes. The objective of this systematic review was to summarise preoperative interventions that report sleep outcomes. Studies that delivered an intervention initiated >24 h prior to surgery among an adult sample without a diagnosed sleep disorder were included. Studies were excluded if they were preclinical or were not published in English. MEDLINE, MEDLINE ePubs Ahead of Print and In-process Citations, Embase, Cochrane Central Register of Controlled Trials, APA PsycINFO, CINAHL, and the Web of Science were searched on February 2, 2023. This review was reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses and was registered with the International Prospective Register of Systematic Reviews (identifier: CRD42021260578). Risk of bias was assessed using the Cochrane Risk-of Bias 2 tool for randomised trials and the Risk Of Bias In Non-randomised Studies - of Interventions for non-randomised trials. Certainty of findings were assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. The searching yielded 10,938 total citations, and after screening resulted in 28 randomised and 19 non-randomised trials (47 total) with 4937 participants. Sleep was a primary outcome in 16 trials; a sleep outcome was significantly improved relative to comparator in 23 trials. This review demonstrates that preoperative sleep is modifiable via a variety of interventions, including pharmacological, non-pharmacological, and nursing interventions delivered preoperatively or perioperatively. Our results should be considered with caution due to an overall intermediate to high risk of bias in the included trials, and low to very low certainty of evidence. This review supports the modifiability of sleep health among surgical patients and provides the groundwork for preoperative sleep optimisation research.

2.
Metab Eng ; 79: 14-26, 2023 09.
Article in English | MEDLINE | ID: mdl-37406763

ABSTRACT

Engineering the utilization of non-native substrates, or synthetic heterotrophy, in proven industrial microbes such as Saccharomyces cerevisiae represents an opportunity to valorize plentiful and renewable sources of carbon and energy as inputs to bioprocesses. We previously demonstrated that activation of the galactose (GAL) regulon, a regulatory structure used by this yeast to coordinate substrate utilization with biomass formation during growth on galactose, during growth on the non-native substrate xylose results in a vastly altered gene expression profile and faster growth compared with constitutive overexpression of the same heterologous catabolic pathway. However, this effort involved the creation of a xylose-inducible variant of Gal3p (Gal3pSyn4.1), the sensor protein of the GAL regulon, preventing this semi-synthetic regulon approach from being easily adapted to additional non-native substrates. Here, we report the construction of a variant Gal3pMC (metabolic coordinator) that exhibits robust GAL regulon activation in the presence of structurally diverse substrates and recapitulates the dynamics of the native system. Multiple molecular modeling studies suggest that Gal3pMC occupies conformational states corresponding to galactose-bound Gal3p in an inducer-independent manner. Using Gal3pMC to test a regulon approach to the assimilation of the non-native lignocellulosic sugars xylose, arabinose, and cellobiose yields higher growth rates and final cell densities when compared with a constitutive overexpression of the same set of catabolic genes. The subsequent demonstration of rapid and complete co-utilization of all three non-native substrates suggests that Gal3pMC-mediated dynamic global gene expression changes by GAL regulon activation may be universally beneficial for engineering synthetic heterotrophy.


Subject(s)
Saccharomyces cerevisiae Proteins , Transcription Factors , Transcription Factors/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Heterotrophic Processes , Galactose/genetics , Galactose/metabolism , Xylose/genetics , Xylose/metabolism , Saccharomyces cerevisiae/metabolism
3.
iScience ; 26(6): 106963, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378347

ABSTRACT

Bacillus Calmette-Guérin (BCG) remains the only approved tuberculosis (TB) vaccine despite limited efficacy. Preclinical studies of next-generation TB vaccines typically use a murine aerosol model with a supraphysiologic challenge dose. Here, we show that the protective efficacy of a live attenuated Mycobacterium tuberculosis (Mtb) vaccine ΔLprG markedly exceeds that of BCG in a low-dose murine aerosol challenge model. BCG reduced bacterial loads but did not prevent establishment or dissemination of infection in this model. In contrast, ΔLprG prevented detectable infection in 61% of mice and resulted in anatomic containment of 100% breakthrough infections to a single lung. Protection was partially abrogated in a repeated low-dose challenge model, which showed serum IL-17A, IL-6, CXCL2, CCL2, IFN-γ, and CXCL1 as correlates of protection. These data demonstrate that ΔLprG provides increased protection compared to BCG, including reduced detectable infection and anatomic containment, in a low-dose murine challenge model.

4.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823160

ABSTRACT

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

5.
Mult Scler Relat Disord ; 70: 104472, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566698

ABSTRACT

BACKGROUND: The prevalence of multiple sclerosis (MS) in older people is increasing due to population aging and availability of effective disease-modifying therapies (DMTs). Treating older people with MS is complicated by age-related and MS-related comorbidities, immunologic effects of prior DMTs, and immunosenescence. Teriflunomide is a once-daily oral immunomodulator that has demonstrated efficacy and acceptable safety in clinical trials of adults with relapsing forms of MS (RMS). However, there are limited clinical trial and real-world data regarding teriflunomide use in people with MS aged >55 years. We analyzed real-world data to assess the effectiveness and safety of teriflunomide in older people with RMS who had switched to this agent from other DMTs. METHODS: People with RMS (relapsing remitting and active secondary progressive MS) aged ≥55 years who had switched from other DMTs to teriflunomide (7 mg or 14 mg) for ≥1 year were identified retrospectively by chart review at four sites in the United States. Data were extracted from medical records from 1 year pre-index to 2 years post-index (index defined as the teriflunomide start date). Assessments of effectiveness included annualized relapse rate (ARR), Expanded Disability Status Scale (EDSS) score, and magnetic resonance imaging (MRI) outcomes. Assessments of safety included lymphocyte counts, infections, and malignancies. We examined the effectiveness outcomes and lymphocyte counts within sub-groups defined by age (55-64, ≥65 years), sex, MS type, and prior route of DMT administration (oral, injectable, infusible). RESULTS: In total, 182 patients with RMS aged ≥55 years who switched from other DMTs to teriflunomide were identified (mean [SD] age: 62.5 [5.4] years). Mean ARR decreased from the start of teriflunomide treatment (mean [SD]: 0.43 [0.61]) to year 1 post-index (0.13 [0.65]) and year 2 post-index (0.05 [0.28]). Mean EDSS score remained unchanged from index (mean [SD]: 4.5 [1.8]) to 1 year post-treatment (4.5 [1.8]) and increased slightly at 2 years post-treatment (4.7 [1.7]). MRI scans from index and years 1 and 2 post-index compared with scans from the previous year indicated that most patients had stable or improved MRI outcomes at index (87.7%) and remained stable or improved at years 1 (96.0%) and 2 (93.6%). Lymphopenia decreased at years 1 (21.4%) and 2 post-index (14.8%, compared to index (23.5%). By 1 year post-index, fewer patients had grade 3 or 4 lymphopenia, and at 2 years post-index, there were no patients with grade 3 or 4 lymphopenia. Infection incidence was low (n = 40, 22.0%) and none were related to teriflunomide. The decreases in lymphopenia were driven by decreases among people who switched from a prior oral DMT; there were no notable differences in lymphopenia across the other sub-groups examined. ARR, EDSS score, and MRI outcomes across all sub-groups were similar to the results of the overall population. CONCLUSION: Our multicenter, longitudinal, retrospective study demonstrated that patients with RMS aged 55 or older switching to teriflunomide from other DMTs had significantly improved ARR, stable disability, and stable or improved MRI over up to 2 years' follow up. Safety results were acceptable with fewer patients exhibiting lymphopenia at years 1 and 2 post-index.


Subject(s)
Leukopenia , Lymphopenia , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Adult , Humans , Aged , Middle Aged , Multiple Sclerosis/drug therapy , Retrospective Studies , Crotonates/therapeutic use , Toluidines/therapeutic use , Recurrence , Lymphopenia/chemically induced , Multiple Sclerosis, Relapsing-Remitting/drug therapy
6.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35857623

ABSTRACT

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
7.
Vet Pathol ; 59(4): 648-660, 2022 07.
Article in English | MEDLINE | ID: mdl-35521761

ABSTRACT

There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.


Subject(s)
COVID-19 , Rodent Diseases , Animals , COVID-19/veterinary , COVID-19 Vaccines , Cricetinae , Disease Models, Animal , Humans , Immune Sera , Immunoglobulin G , Lung/pathology , Macaca mulatta , Mesocricetus , Rodent Diseases/pathology , SARS-CoV-2 , Weight Loss
8.
Clin Transplant ; 36(10): e14686, 2022 10.
Article in English | MEDLINE | ID: mdl-35462421

ABSTRACT

BACKGROUND: Prehabilitation programs as part of ERAS protocols are being increasingly used in multiple surgeries, improving postoperative outcomes. Data regarding prehabilitation programs in patients awaiting liver transplantation and their outcomes is scarce. OBJECTIVES: To identify whether prehabilitation programs based on exercise training conducted prior to liver transplantation improve short-term postoperative outcomes, and to provide expert panel recommendations. DATA SOURCES: Ovid MEDLINE, Embase, Scopus, Google Scholar, and Cochrane Central. METHODS: Systematic review following PRISMA guidelines and recommendations using the GRADE approach derived from an international expert panel. Studies included those evaluating postoperative outcomes, as well as those evaluating functional outcomes. PROSPERO ID: CRD42021236305. RESULTS: Of the 170 studies screened, only one assessed the primary objective. Most studies focus on the preoperative impact of exercise training on aerobic capacity, muscle mass and/or strength, showing positive effects and no significant adverse events, but are underpowered and with heterogenous designs and interventions. The non-randomized observational study which assessed relevant postoperative outcomes, showed a non-significant trend towards reduced 90-day readmission rate and shorter length of stay in the prehabilitation group. CONCLUSIONS: Prehabilitation prior to liver transplantation is unlikely to be harmful, and likely to have short term benefits on functional status. We cautiously recommend prehabilitation on the basis of absence of harm and possibility of benefit (Quality of Evidence; Very Low | Grade of Recommendation; Low).


Subject(s)
Liver Transplantation , Preoperative Care , Humans , Preoperative Care/methods , Exercise , Postoperative Period , Postoperative Complications/prevention & control , Observational Studies as Topic
9.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35427477

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Subject(s)
Ad26COVS1/immunology , BNT162 Vaccine/immunology , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , T-Lymphocytes/immunology
10.
Sci Transl Med ; 14(641): eabn6150, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35258323

ABSTRACT

Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported frequently in vaccinated individuals with waning immunity. In particular, a cluster of over 1000 infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. In this study, vaccinated individuals who tested positive for SARS-CoV-2 (n = 16) demonstrated substantially higher serum antibody responses than vaccinated individuals who tested negative for SARS-CoV-2 (n = 23), including 32-fold higher binding antibody titers and 31-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed higher mucosal antibody responses in nasal secretions and higher spike protein-specific CD8+ T cell responses in peripheral blood than did vaccinated individuals who tested negative. These data demonstrate that fully vaccinated individuals developed robust anamnestic antibody and T cell responses after infection with the SARS-CoV-2 delta variant. Moreover, these findings suggest that population immunity will likely increase over time by a combination of widespread vaccination and breakthrough infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Humans
11.
Nature ; 603(7901): 493-496, 2022 03.
Article in English | MEDLINE | ID: mdl-35102312

ABSTRACT

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 spike protein1. Cellular immune responses, particularly CD8+ T cell responses, probably contribute to protection against severe SARS-CoV-2 infection2-6. Here we show that cellular immunity induced by current vaccines against SARS-CoV-2 is highly conserved to the SARS-CoV-2 Omicron spike protein. Individuals who received the Ad26.COV2.S or BNT162b2 vaccines demonstrated durable spike-specific CD8+ and CD4+ T cell responses, which showed extensive cross-reactivity against both the Delta and the Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron spike-specific CD8+ T cell responses were 82-84% of the WA1/2020 spike-specific CD8+ T cell responses. These data provide immunological context for the observation that current vaccines still show robust protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantially reduced neutralizing antibody responses7,8.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunity, Cellular , SARS-CoV-2/classification , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunity, Humoral , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
12.
bioRxiv ; 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35169798

ABSTRACT

BACKGROUND: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. METHODS: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. RESULTS: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. CONCLUSIONS: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

13.
Sci Transl Med ; 14(638): eabm4996, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35191769

ABSTRACT

Ad26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans. In this study, we report the correlates of durability of humoral and cellular immune responses in 20 rhesus macaques immunized with single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8 to 10 months after the initial immunization. Ad26.COV2.S elicited durable binding and neutralizing antibodies as well as memory B cells and long-lived bone marrow plasma cells. Innate immune responses and bone marrow plasma cell responses correlated with durable antibody responses. After Ad26.COV2.S boost immunization, binding and neutralizing antibody responses against multiple SARS-CoV-2 variants increased 31- to 69-fold and 23- to 43-fold, respectively, compared with preboost concentrations. Antigen-specific B cell and T cell responses also increased substantially after the boost immunization. Boosting with a modified Ad26.COV2.S.351 vaccine expressing the SARS-CoV-2 spike protein from the beta variant led to largely comparable responses with slightly higher beta- and omicron-specific humoral immune responses. These data demonstrate that a late boost with Ad26.COV2.S or Ad26.COV2.S.351 resulted in a marked increase in humoral and cellular immune responses that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques.


Subject(s)
Ad26COVS1 , COVID-19 , Immunity, Humoral , Immunization, Secondary , SARS-CoV-2 , Ad26COVS1/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca mulatta , Spike Glycoprotein, Coronavirus
14.
NPJ Vaccines ; 7(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013325

ABSTRACT

SARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.

15.
medRxiv ; 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35018387

ABSTRACT

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 Spike immunogen 1 , resulting in increased breakthrough infections and reduced vaccine efficacy. Cellular immune responses, particularly CD8+ T cell responses, are likely critical for protection against severe SARS-CoV-2 disease 2-6 . Here we show that cellular immunity induced by current SARS-CoV-2 vaccines is highly cross-reactive against the SARS-CoV-2 Omicron variant. Individuals who received Ad26.COV2.S or BNT162b2 vaccines demonstrated durable CD8+ and CD4+ T cell responses that showed extensive cross-reactivity against both the Delta and Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron-specific CD8+ T cell responses were 82-84% of WA1/2020-specific CD8+ T cell responses. These data suggest that current vaccines may provide considerable protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantial reduction of neutralizing antibody responses.

16.
J Phys Act Health ; 19(1): 29-36, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34740993

ABSTRACT

BACKGROUND: The relationship between preoperative physical activity (PA) and hospital length of stay (LOS) following radical prostatectomy (RP) is poorly understood. In addition, the relationship between PA and the American Society of Anesthesiologists Physical Status score (ASA PS), an established prognosticator of surgical risk, has not been studied. The authors assessed the relationship between leisure-time PA (LTPA), ASA PS, and LOS in individuals undergoing RP. METHODS: This retrospective cohort study was conducted using data from an institutional database. Ordinal logistic regression was used to assess the relationship between preoperative LTPA and physical status as indicated by the ASA PS. Binary logistic regression was used to assess the relationship between preoperative LTPA and LOS. RESULTS: A sample of 1064 participants were included in the analyses. The participants in the highest preoperative LTPA quartile had 45% reduced odds (P = .015) of a worse ASA PS classification compared with participants in the lowest quartile. The participants engaging in vigorous LTPA preoperatively had 35% lower odds (P = .014) of a >2-day LOS following RP compared with participants who were not engaging in preoperative vigorous LTPA. CONCLUSIONS: Our findings suggest that total and vigorous preoperative LTPA is associated with improved preoperative American Society of Anesthesiologists scores and LOS following RP, respectively.


Subject(s)
Anesthesiologists , Postoperative Complications , Exercise , Humans , Length of Stay , Male , Prostatectomy , Retrospective Studies
17.
J Virol ; 96(2): e0159921, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705557

ABSTRACT

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Administration, Oral , Animals , Female , Macaca mulatta , Male , Vaccine Efficacy
18.
Clin Transplant ; 36(1): e14504, 2022 01.
Article in English | MEDLINE | ID: mdl-34637561

ABSTRACT

INTRODUCTION: Liver transplant anesthesiology is an evolving and expanding subspecialty, and programs have, in the past, exhibited significant variations of practice at transplant centers across the United States. In order to explore current practice patterns, the Quality & Standards Committee from the Society for the Advancement of Transplant Anesthesia (SATA) undertook a survey of liver transplant anesthesiology program directors. METHODS: Program directors were invited to participate in an online questionnaire. A total of 110 program directors were identified from the 2018 Scientific Registry of Transplant Recipients (SRTR) database. Replies were received from 65 programs (response rate of 59%). RESULTS: Our results indicate an increase in transplant anesthesia fellowship training and advanced training in transesophageal echocardiography (TEE). We also find that the use of intraoperative TEE and viscoelastic testing is more common. However, there has been a reduction in the use of veno-venous bypass, routine placement of pulmonary artery catheters and the intraoperative use of anti-fibrinolytics when compared to prior surveys. CONCLUSION: The results show considerable heterogeneity in practice patterns across the country that continues to evolve. However, there appears to be a movement towards the adoption of specific structural and clinical practices.


Subject(s)
Anesthesia , Anesthesiology , Liver Transplantation , Adult , Fellowships and Scholarships , Humans , Surveys and Questionnaires , United States
20.
J Infect Dis ; 225(7): 1124-1128, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34792136

ABSTRACT

Individuals on immunosuppressive (IS) therapy have increased mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and delayed viral clearance may lead to new viral variants. IS therapy reduces antibody responses following coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccination; however, a comprehensive assessment of vaccine immunogenicity is lacking. Here we show that IS therapy reduced neutralizing, binding, and nonneutralizing antibody functions in addition to CD4 and CD8 T-cell interferon-γ responses following COVID-19 mRNA vaccination compared to immunocompetent individuals. Moreover, IS therapy reduced cross-reactivity against SARS-CoV-2 variants. These data suggest that the standard COVID-19 mRNA vaccine regimens will likely not provide optimal protection in immunocompromised individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...