Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
3.
bioRxiv ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39026794

ABSTRACT

Biliary tract cancers (BTCs) are a group of deadly malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we present the integrative analysis of 63 BTC cell lines via multi-omics clustering and genome- scale CRISPR screens, providing a platform to illuminate BTC biology and inform therapeutic development. We identify dependencies broadly enriched in BTC compared to other cancers as well as dependencies selective to the anatomic subtypes. Notably, cholangiocarcinoma cell lines are stratified into distinct lineage subtypes based on biliary or dual biliary/hepatocyte marker signatures, associated with dependency on specific lineage survival factors. Transcriptional analysis of patient specimens demonstrates the prognostic significance of these lineage subtypes. Additionally, we delineate strategies to enhance targeted therapies or to overcome resistance in cell lines with key driver gene mutations. Furthermore, clustering based on dependencies and proteomics data elucidates unexpected functional relationships, including a BTC subgroup with partial squamous differentiation. Thus, this cell line atlas reveals potential therapeutic targets in molecularly defined BTCs, unveils biologically distinct disease subtypes, and offers a vital resource for BTC research.

5.
Nat Chem Biol ; 20(9): 1227-1236, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38514884

ABSTRACT

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.


Subject(s)
Biotinylation , Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Humans , Ubiquitin/metabolism , Ubiquitin/chemistry , Substrate Specificity , HEK293 Cells , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Proteolysis
7.
Nat Genet ; 55(10): 1709-1720, 2023 10.
Article in English | MEDLINE | ID: mdl-37749246

ABSTRACT

The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct ß-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Phosphatidylinositol 3-Kinases , beta Catenin/genetics , Wnt Signaling Pathway/genetics , Cell Proliferation , Cell Line, Tumor
8.
Cell ; 186(8): 1523-1527, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059060

ABSTRACT

Our understanding of tumorigenesis and cancer progression as well as clinical therapies for different cancer types have evolved dramatically in recent years. However, even with this progress, there are big challenges for scientists and oncologists to tackle, ranging from unpacking the molecular and cellular mechanisms involved to therapeutics and biomarker development to quality of life in the aftermath of therapy. In this article, we asked researchers to comment on the questions that they think are important to address in the coming years.


Subject(s)
Neoplasms , Research Personnel , Humans , Carcinogenesis , Neoplasms/blood , Neoplasms/pathology , Neoplasms/therapy , Quality of Life , Research , Biomarkers, Tumor/blood
9.
Cell Rep ; 42(4): 112297, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36961816

ABSTRACT

Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer. Our approach includes genome-wide CRISPR screens with or without drugs targeting the oncogenic driver ("anchor therapy"), and large-scale pairwise combination screens of anchor therapies with 351 other drugs. Interestingly, targeting of a small number of genes, including MCL1, BCL2L1, and YAP1, sensitizes multiple cell lines to the respective anchor therapy. Data from drug combination screens with EGF816 and ceritinib indicate that dasatinib and agents disrupting microtubules act synergistically across many cell lines. Finally, we show that a higher-order-combination screen with 26 selected drugs in two resistant EGFR-mutant lung cancer cell lines identified active triplet combinations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neoplasm Recurrence, Local/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , Receptor Protein-Tyrosine Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Cell Line, Tumor
10.
Nat Commun ; 13(1): 5495, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127368

ABSTRACT

Conditional degron tags (CDTs) are a powerful tool for target validation that combines the kinetics and reversible action of pharmacological agents with the generalizability of genetic manipulation. However, successful design of a CDT fusion protein often requires a prolonged, ad hoc cycle of construct design, failure, and re-design. To address this limitation, we report here a system to rapidly compare the activity of five unique CDTs: AID/AID2, IKZF3d, dTAG, HaloTag, and SMASh. We demonstrate the utility of this system against 16 unique protein targets. We find that expression and degradation are highly dependent on the specific CDT, the construct design, and the target. None of the CDTs leads to efficient expression and/or degradation across all targets; however, our systematic approach enables the identification of at least one optimal CDT fusion for each target. To enable the adoption of CDT strategies more broadly, we have made these reagents, and a detailed protocol, available as a community resource.


Subject(s)
Proteolysis , Kinetics
11.
Nat Commun ; 13(1): 2469, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513429

ABSTRACT

Combinatorial CRISPR technologies have emerged as a transformative approach to systematically probe genetic interactions and dependencies of redundant gene pairs. However, the performance of different functional genomic tools for multiplexing sgRNAs vary widely. Here, we generate and benchmark ten distinct pooled combinatorial CRISPR libraries targeting paralog pairs to optimize digenic knockout screens. Libraries composed of dual Streptococcus pyogenes Cas9 (spCas9), orthogonal spCas9 and Staphylococcus aureus (saCas9), and enhanced Cas12a from Acidaminococcus were evaluated. We demonstrate a combination of alternative tracrRNA sequences from spCas9 consistently show superior effect size and positional balance between the sgRNAs as a robust combinatorial approach to profile genetic interactions of multiple genes.


Subject(s)
Acidaminococcus , CRISPR-Cas Systems , Acidaminococcus/genetics , CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/genetics , Staphylococcus aureus/genetics , Streptococcus pyogenes/genetics
12.
Nat Genet ; 53(12): 1664-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34857952

ABSTRACT

Although single-gene perturbation screens have revealed a number of new targets, vulnerabilities specific to frequently altered drivers have not been uncovered. An important question is whether the compensatory relationship between functionally redundant genes masks potential therapeutic targets in single-gene perturbation studies. To identify digenic dependencies, we developed a CRISPR paralog targeting library to investigate the viability effects of disrupting 3,284 genes, 5,065 paralog pairs and 815 paralog families. We identified that dual inactivation of DUSP4 and DUSP6 selectively impairs growth in NRAS and BRAF mutant cells through the hyperactivation of MAPK signaling. Furthermore, cells resistant to MAPK pathway therapeutics become cross-sensitized to DUSP4 and DUSP6 perturbations such that the mechanisms of resistance to the inhibitors reinforce this mechanism of vulnerability. Together, multigene perturbation technologies unveil previously unrecognized digenic vulnerabilities that may be leveraged as new therapeutic targets in cancer.


Subject(s)
Dual Specificity Phosphatase 6/genetics , Dual-Specificity Phosphatases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Phosphatases/genetics , Neoplasms/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Enzyme Activation , GTP Phosphohydrolases/genetics , Gene Knockout Techniques , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Membrane Proteins/genetics , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics
13.
Cancer Res ; 81(23): 5806-5809, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853037

ABSTRACT

CRISPR screens combined with molecular and genetic profiling of large panels of cell lines are helping to systematically identify cancer vulnerabilities. These large-scale screens, together with focused in vivo and isogenic cell line screens, have identified a growing number of promising targets and led directly to numerous target-specific drug discovery programs, several of which have reached clinical testing. However, systematic loss-of-function studies are still in their early stages. Genetic redundancy, the limitation of cell line models for many cancer types, and the difficulty of conducting complex in vitro and in vivo screens remain opportunities for discovery. We expect that over the next few years, efforts like the Cancer Dependency Map along with more focused screens will play a significant role in the creation of a roadmap of oncology therapeutic targets.


Subject(s)
CRISPR-Cas Systems , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/therapy , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology
14.
Nat Cancer ; 2(4): 429-443, 2021 04.
Article in English | MEDLINE | ID: mdl-34568836

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) are effective in metastatic breast cancer, but they have been only modestly effective in most other tumor types. Here we show that tumors expressing low CDK6 rely on CDK4 function, and are exquisitely sensitive to CDK4/6i. In contrast, tumor cells expressing both CDK4 and CDK6 have increased reliance on CDK6 to ensure cell cycle progression. We discovered that CDK4/6i and CDK4/6 degraders potently bind and inhibit CDK6 selectively in tumors in which CDK6 is highly thermo-unstable and strongly associated with the HSP90/CDC37 complex. In contrast, CDK4/6i and CDK4/6 degraders are ineffective in antagonizing tumor cells expressing thermostable CDK6, due to their weaker binding to CDK6 in these cells. Thus, we uncover a general mechanism of intrinsic resistance to CDK4/6i and CDK4/6i-derived degraders and the need for novel inhibitors targeting the CDK4/6i-resistant, thermostable form of CDK6 for application as cancer therapeutics.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6 , Female , HSP90 Heat-Shock Proteins , Humans
15.
Mol Syst Biol ; 17(9): e10156, 2021 09.
Article in English | MEDLINE | ID: mdl-34569154

ABSTRACT

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.


Subject(s)
Phosphoproteins , Proteomics , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Signal Transduction
16.
J Med Chem ; 64(15): 11148-11168, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34342224

ABSTRACT

PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Drug Discovery , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyridazines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein-Arginine N-Methyltransferases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
17.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34358446

ABSTRACT

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Subject(s)
Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/physiology , Animals , Cell Line, Tumor , Cytoplasm/metabolism , Female , HCT116 Cells , HEK293 Cells , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ion Channels/metabolism , Male , Methylation , Mice , Mice, Nude , Nuclear Proteins/metabolism , Peptides/genetics , Protein Binding , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Spliceosomes/metabolism
18.
Cancer Cell ; 39(4): 466-479, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33450197

ABSTRACT

Despite remarkable successes in the clinic, cancer targeted therapy development remains challenging and the failure rate is disappointingly high. This problem is partly due to the misapplication of the targeted therapy paradigm to therapeutics targeting pan-essential genes, which can result in therapeutics whereby efficacy is attenuated by dose-limiting toxicity. Here we summarize the key features of successful chemotherapy and targeted therapy agents, and use case studies to outline recurrent challenges to drug development efforts targeting pan-essential genes. Finally, we suggest strategies to avoid previous pitfalls for ongoing and future development of pan-essential therapeutics.


Subject(s)
Antineoplastic Agents/therapeutic use , Genes, Essential/genetics , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/therapy , Drug Therapy , Humans , Molecular Targeted Therapy/methods , Treatment Outcome
19.
ACS Med Chem Lett ; 11(11): 2131-2138, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33209191

ABSTRACT

FK506-binding protein 35, FKBP35, has been implicated as an essential malarial enzyme. Rapamycin and FK506 exhibit antiplasmodium activity in cultured parasites. However, due to the highly conserved nature of the binding pockets of FKBPs and the immunosuppressive properties of these drugs, there is a need for compounds that selectively inhibit FKBP35 and lack the undesired side effects. In contrast to human FKBPs, FKBP35 contains a cysteine, C106, adjacent to the rapamycin binding pocket, providing an opportunity to develop targeted covalent inhibitors of Plasmodium FKBP35. Here, we synthesize inhibitors of FKBP35, show that they directly bind FKBP35 in a model cellular setting, selectively covalently modify C106, and exhibit antiplasmodium activity in blood-stage cultured parasites.

20.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32910655

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Antineoplastic Agents/therapeutic use , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Macaca fascicularis , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Rats , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL