Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 291(Pt 3): 132760, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34740697

ABSTRACT

Major agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 °C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOH-aqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 °C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment. Therefore, after activation in different methods, all interactive properties such as elemental, chemical, structural, morphological, and thermal analyses were investigated comprehensively for all samples. The crystallinity peak intensity around 22°λ at the angle of diffraction of 2θ confirmed the presence of silica, higher stability of the material, and removal of organic components during the KOH activation. AgNP-KOH-RH and KOH-RHH presented high porosity on the outer surface. The presence of negligible volatile matter in KOH-RHH by TGA demonstrated the decomposition of organic compound. Very high ratio of aromatic carbon and lignin content by FTIR and XPS analysis in both AgNP-KOH-RH and KOH-RHH showed these two samples have improved stability. Very high negative surface charge (zeta potential) in AgNP-KOH-RH (-43.9 mV) and KOH-RHH (-43.1 mV) indicated the enhanced water holding capacity. Surface area for all experimented porous materials has been enhanced after KOH activation, where KOH-RHH demonstrated the maximum surface area value, 27.87 m2/g. However, AgNP-KOH-RH presented maximum pore diameter, 18.16 nm, and pore volume, 0.12 cm3/g. Hence, it can be concluded that both KOH-RHH and AgNP-KOH-RH have the potential to be implemented as wastewater adsorbents.


Subject(s)
Metal Nanoparticles , Oryza , Water Purification , Hydroxides , Porosity , Potassium Compounds , Silver
2.
Sci Rep ; 10(1): 18851, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139793

ABSTRACT

The recent implication of circular economy in Australia spurred the demand for waste material utilization for value-added product generations on a commercial scale. Therefore, this experimental study emphasized on agricultural waste biomass, rice husk (RH) as potential feedstock to produce valuable products. Rice husk biochar (RB) was obtained at temperature: 180 °C, pressure: 70 bar, reaction time: 20 min with water via hydrothermal carbonization (HTC), and the obtained biochar yield was 57.9%. Enhancement of zeta potential value from - 30.1 to - 10.6 mV in RB presented the higher suspension stability, and improvement of surface area and porosity in RB demonstrated the wastewater adsorption capacity. Along with that, an increase of crystallinity in RB, 60.5%, also indicates the enhancement of the catalytic performance of the material significantly more favorable to improve the adsorption efficiency of transitional compounds. In contrast, an increase of the atomic O/C ratio in RB, 0.51 delineated high breakdown of the cellulosic component, which is favorable for biofuel purpose. 13.98% SiO2 reduction in RB confirmed ash content minimization and better quality of fuel properties. Therefore, the rice husk biochar through HTC can be considered a suitable material for further application to treat wastewater and generate bioenergy.

SELECTION OF CITATIONS
SEARCH DETAIL