Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 865918, 2022.
Article in English | MEDLINE | ID: mdl-35633663

ABSTRACT

In the natural environment, most microorganisms live in mixed-species biofilms, in which the metabolism and growth of organisms are different from that in single-species biofilms. Adhesive bacteria and their biofilms on the surface of food processing equipment are the sources of cross-contamination, leading to the risk for humans. Slightly acidic electrolyzed water (SAEW) has been proposed as a novel sanitizer in the food and agriculture industry. In this study, we investigated the changes in the physical properties of SAEW under different conditions and the disinfection abilities of SAEW against spore-forming and non-spore-forming pathogens. Furthermore, we examined the disinfection abilities of SAEW after 12 months of shelf life on a mixed-species biofilm of Listeria monocytogenes Scott A and Staphylococcus aureus. The results showed that SAEW at 30 and 50 ppm achieved all-kill of the spore-forming pathogen Bacillus cereus within 30 s. Changes in the ACC and pH of the produced SAEW were generally affected by the storage conditions. Both spore-forming and non-spore-forming pathogens were not detected under treatment with 50 ppm SAEW for 5 min under HDPE-closed conditions throughout the whole storage period. Moreover, 25 mg/L SAEW can inactivate L. monocytogenes Scott A and S. aureus biofilm cells in ~2.45 and 2.57 log CFU/mL in biofilms within 5-min treatment. However, the decline of the two bacteria in the mixed-species biofilm was 1.95 and 1.43 log CFU/mL, respectively. The changes in the cell membrane permeability of the mixed-species biofilm under treatment with SAEW were observed by using atomic force microscopy and confocal laser scanning microscopy. L. monocytogenes Scott A was more sensitive to SAEW in the mixed-species biofilm cells. These findings exhibited strong antibiofilm activities of SAEW in impairing biofilm cell membranes, decreasing cell density, and eliminating biofilm, which suggest that SAEW is an excellent antibacterial agent in the food processing industries.

2.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163199

ABSTRACT

In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.


Subject(s)
Anti-Obesity Agents/pharmacology , Pediococcus acidilactici/metabolism , Probiotics/pharmacology , Animals , Anti-Bacterial Agents/metabolism , Bile Acids and Salts/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Fermentation , Herbal Medicine/methods , Lactobacillales/genetics , Lactobacillales/metabolism , Obesity/microbiology , Pediococcus acidilactici/physiology , RNA, Ribosomal, 16S/genetics
3.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35189636

ABSTRACT

There is currently a transformed interest toward understanding the impact of fermentation on functional food development due to growing consumer interest on modified health benefits of sustainable foods. In this review, we attempt to summarize recent findings regarding the impact of Next-generation sequencing and other bioinformatics methods in the food microbiome and use prediction software to understand the critical role of microbes in producing fermented foods. Traditionally, fermentation methods and starter culture development were considered conventional methods needing optimization to eliminate errors in technique and were influenced by technical knowledge of fermentation. Recent advances in high-output omics innovations permit the implementation of additional logical tactics for developing fermentation methods. Further, the review describes the multiple functions of the predictions based on docking studies and the correlation of genomic and metabolomic analysis to develop trends to understand the potential food microbiome interactions and associated products to become a part of a healthy diet.


Subject(s)
Fermented Foods , Microbiota , Computational Biology , Fermentation , Food Microbiology , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...