Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunol ; 200(2): 483-499, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29212907

ABSTRACT

T cells use the endocytic pathway for key cell biological functions, including receptor turnover and maintenance of the immunological synapse. Some of the established players include the Rab GTPases, the SNARE complex proteins, and others, which function together with EPS-15 homology domain-containing (EHD) proteins in non-T cell systems. To date, the role of the EHD protein family in T cell function remains unexplored. We generated conditional EHD1/3/4 knockout mice using CD4-Cre and crossed these with mice bearing a myelin oligodendrocyte glycoprotein-specific TCR transgene. We found that CD4+ T cells from these mice exhibited reduced Ag-driven proliferation and IL-2 secretion in vitro. In vivo, these mice exhibited reduced severity of experimental autoimmune encephalomyelitis. Further analyses showed that recycling of the TCR-CD3 complex was impaired, leading to increased lysosomal targeting and reduced surface levels on CD4+ T cells of EHD1/3/4 knockout mice. Our studies reveal a novel role of the EHD family of endocytic recycling regulatory proteins in TCR-mediated T cell functions.


Subject(s)
Endocytosis , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vesicular Transport Proteins/metabolism , Animals , CD3 Complex/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Gene Expression , Gene Knockout Techniques , Lymphocyte Activation , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Lysosomes/metabolism , Mice , Mice, Knockout , Multigene Family , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Protein Binding , Protein Transport , Proteolysis , Vesicular Transport Proteins/genetics
2.
Elife ; 62017 12 04.
Article in English | MEDLINE | ID: mdl-29199959

ABSTRACT

Neural crest cells migrate throughout the embryo, but how cells move in a directed and collective manner has remained unclear. Here, we perform the first single-cell transcriptome analysis of cranial neural crest cell migration at three progressive stages in chick and identify and establish hierarchical relationships between cell position and time-specific transcriptional signatures. We determine a novel transcriptional signature of the most invasive neural crest Trailblazer cells that is consistent during migration and enriched for approximately 900 genes. Knockdown of several Trailblazer genes shows significant but modest changes to total distance migrated. However, in vivo expression analysis by RNAscope and immunohistochemistry reveals some salt and pepper patterns that include strong individual Trailblazer gene expression in cells within other subregions of the migratory stream. These data provide new insights into the molecular diversity and dynamics within a neural crest cell migratory stream that underlie complex directed and collective cell behaviors.


Subject(s)
Cell Movement , Gene Expression Profiling , Neural Crest/physiology , Single-Cell Analysis , Animals , Chick Embryo , Spatio-Temporal Analysis
3.
Dev Biol ; 407(1): 12-25, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26278036

ABSTRACT

Embryonic neural crest cells travel in discrete streams to precise locations throughout the head and body. We previously showed that cranial neural crest cells respond chemotactically to vascular endothelial growth factor (VEGF) and that cells within the migratory front have distinct behaviors and gene expression. We proposed a cell-induced gradient model in which lead neural crest cells read out directional information from a chemoattractant profile and instruct trailers to follow. In this study, we show that migrating chick neural crest cells do not display distinct lead and trailer gene expression profiles in culture. However, exposure to VEGF in vitro results in the upregulation of a small subset of genes associated with an in vivo lead cell signature. Timed addition and removal of VEGF in culture reveals the changes in neural crest cell gene expression are rapid. A computational model incorporating an integrate-and-switch mechanism between cellular phenotypes predicts migration efficiency is influenced by the timescale of cell behavior switching. To test the model hypothesis that neural crest cellular phenotypes respond to changes in the VEGF chemoattractant profile, we presented ectopic sources of VEGF to the trailer neural crest cell subpopulation and show diverted cell trajectories and stream alterations consistent with model predictions. Gene profiling of trailer cells that diverted and encountered VEGF revealed upregulation of a subset of 'lead' genes. Injection of neuropilin1 (Np1)-Fc into the trailer subpopulation or electroporation of VEGF morpholino to reduce VEGF signaling failed to alter trailer neural crest cell trajectories, suggesting trailers do not require VEGF to maintain coordinated migration. These results indicate that VEGF is one of the signals that establishes lead cell identity and its chemoattractant profile is critical to neural crest cell migration.


Subject(s)
Neural Crest/cytology , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/physiology , Animals , Cell Movement , Cellular Microenvironment , Chemotaxis , Chick Embryo , Computer Simulation , Gene Expression Regulation, Developmental
4.
Development ; 142(11): 2014-25, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25977364

ABSTRACT

Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors.


Subject(s)
Cell Movement , Gene Expression Profiling , Gene Expression Regulation, Developmental , Neural Crest/cytology , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Cell Movement/genetics , Chick Embryo , Computer Simulation , Gene Knockdown Techniques , Neural Crest/metabolism , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Single-Cell Analysis
5.
Development ; 141(5): 1095-103, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24550117

ABSTRACT

Embryonic cells that migrate long distances must critically balance cell division in order to maintain stream dynamics and population of peripheral targets. Yet details of individual cell division events and how cell cycle is related to phases of migration remain unclear. Here, we examined these questions using the chick cranial neural crest (NC). In vivo time-lapse imaging revealed that a typical migrating NC cell division event lasted ~1 hour and included four stereotypical steps. Cell tracking showed that dividing NC cells maintained position relative to non-dividing neighbors. NC cell division orientation and the time and distance to first division after neural tube exit were stochastic. To address how cell cycle is related to phases of migration, we used FACs analysis to identify significant spatiotemporal differences in NC cell cycle profiles. Two-photon photoconversion of single and small numbers of mKikGR-labeled NC cells confirmed that lead NC cells exhibited a nearly fourfold faster doubling time after populating the branchial arches. By contrast, Ki-67 staining showed that one out of every five later emerging NC cells exited the cell cycle after reaching proximal head targets. The relatively quiescent mitotic activity during NC cell migration to the branchial arches was altered when premigratory cells were reduced in number by tissue ablation. Together, our results provide the first comprehensive details of the pattern and dynamics of cell division events during cranial NC cell migration.


Subject(s)
Neural Crest/cytology , Animals , Cell Cycle/genetics , Cell Cycle/physiology , Cell Division/genetics , Cell Division/physiology , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation , Chick Embryo , Flow Cytometry , Neural Crest/metabolism
7.
Proc Natl Acad Sci U S A ; 106(6): 1930-5, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19181846

ABSTRACT

Hematopoiesis is a tightly controlled process maintained by a small pool of hematopoietic stem cells (HSCs). Here, we demonstrate that the LT-HSC, MPP, premegakaryocytic/erythroid, Pre CFU-E, Pre GM, MkP, and granulocyte-macrophage compartments were all significantly reduced in E2A-deficient bone marrow. Despite a severe depletion of erythroid progenitors, the erythrocyte and megakaryocyte compartments were equivalent in E2A-deficient bone marrow as compared with wild-type mice. E2A-deficient HSCs also failed to efficiently maintain the HSC pool on serial transplantation, and we demonstrate that the E2A proteins regulate cell cycle progression of HSCs by regulating the expression of p21(Cip1), p27(Kip1), and the thrombopoietin receptor, known regulators of HSC self-renewal activity. Based on these observations, we propose that the E2A proteins promote the developmental progression of the entire spectrum of early hematopoietic progenitors and to suppress an erythroid specific program of gene expression in alternative cell lineages. Last, the data mechanistically link E2A, cell cycle regulators, and the maintenance of the HSC pool in a common pathway.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Animals , Cell Cycle , Cell Cycle Proteins , Cell Differentiation/physiology , Erythroid Precursor Cells , Lymphoid Progenitor Cells , Mice , Myeloid Progenitor Cells
8.
Blood ; 106(9): 3020-7, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16037394

ABSTRACT

Accumulating evidence indicates that interaction of stromal cell-derived factor 1 (SDF-1/CXCL12 [CXC motif, ligand 12]) with its cognate receptor, CXCR4 (CXC motif, receptor 4), generates signals that regulate hematopoietic progenitor cell (HPC) trafficking in the bone marrow. During granulocyte colony-stimulating factor (G-CSF)-induced HPC mobilization, CXCL12 protein expression in the bone marrow decreases. Herein, we show that in a series of transgenic mice carrying targeted mutations of their G-CSF receptor and displaying markedly different G-CSF-induced HPC mobilization responses, the decrease in bone marrow CXCL12 protein expression closely correlates with the degree of HPC mobilization. G-CSF treatment induced a decrease in bone marrow CXCL12 mRNA that closely mirrored the fall in CXCL12 protein. Cell sorting experiments showed that osteoblasts and to a lesser degree endothelial cells are the major sources of CXCL12 production in the bone marrow. Interestingly, osteoblast activity, as measured by histomorphometry and osteocalcin expression, is strongly down-regulated during G-CSF treatment. However, the G-CSF receptor is not expressed on osteoblasts; accordingly, G-CSF had no direct effect on osteoblast function. Collectively, these data suggest a model in which G-CSF, through an indirect mechanism, potently inhibits osteoblast activity resulting in decreased CXCL12 expression in the bone marrow. The consequent attenuation of CXCR4 signaling ultimately leads to HPC mobilization.


Subject(s)
Bone Marrow/drug effects , Bone Marrow/metabolism , Chemokines, CXC/genetics , Down-Regulation/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Osteoblasts/drug effects , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement , Cells, Cultured , Chemokine CXCL12 , Chemokines, CXC/metabolism , Granulocyte Colony-Stimulating Factor/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Mice , Osteoblasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Immunity ; 17(4): 413-23, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12387736

ABSTRACT

Neutrophils are released from the bone marrow in a regulated fashion to maintain homeostatic levels in the blood and to respond to physiological stresses, including infection. We show that under basal conditions granulocyte colony-stimulating factor (G-CSF) is an essential regulator of neutrophil release from the bone marrow. Nonredundant signals generated by the membrane-proximal 87 amino acids of the G-CSF receptor (G-CSFR) are sufficient to mediate this response. Surprisingly, G-CSFR expression on neutrophils is neither necessary nor sufficient for their mobilization from the bone marrow, suggesting that G-CSF induces neutrophil mobilization indirectly through the generation of trans-acting signals. Evidence is provided suggesting that downregulation of stromal cell-derived factor 1 expression in the bone marrow may represent such a signal.


Subject(s)
Granulocyte Colony-Stimulating Factor/physiology , Neutrophils/physiology , Animals , Blood Cells/physiology , Bone Marrow Cells/physiology , Cell Movement/drug effects , Cell Movement/physiology , Chemokine CXCL12 , Chemokines, CXC/physiology , Interleukin-8/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis , Neutrophils/drug effects , Receptors, Granulocyte Colony-Stimulating Factor/chemistry , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/physiology , Recombinant Proteins/pharmacology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL