ABSTRACT
Many large-bodied marine fishes that form spawning aggregations, such as the Nassau grouper (Epinephelus striatus), have suffered regional overfishing due to exploitation during spawning. In response, marine resource managers in many locations have established marine protected areas or seasonal closures to recover these overfished stocks. The challenge in assessing management effectiveness lies largely in the development of accurate estimates to track stock size through time. For the past 15 y, the Cayman Islands government has taken a series of management actions aimed at recovering collapsed stocks of Nassau grouper. Importantly, the government also partnered with academic and nonprofit organizations to establish a research and monitoring program (Grouper Moon) aimed at documenting the impacts of conservation action. Here, we develop an integrated population model of 2 Cayman Nassau grouper stocks based on both diver-collected mark-resight observations and video censuses. Using both data types across multiple years, we fit parameters for a state-space model for population growth. We show that over the last 15 y the Nassau grouper population on Little Cayman has more than tripled in response to conservation efforts. Census data from Cayman Brac, while more sparse, show a similar pattern. These findings demonstrate that spatial and seasonal closures aimed at rebuilding aggregation-based fisheries can foster conservation success.
Subject(s)
Bass/physiology , Conservation of Natural Resources , Animals , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Environmental Monitoring , Fisheries , Fishes/physiology , Models, Biological , Oceans and Seas , Population Density , Surveys and Questionnaires , West IndiesABSTRACT
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9-60.9 million ha-1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was â¼27.9 million butterflies ha-1 (95% CI [2.4-80.7] million ha-1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha-1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.