Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mol Biol ; 434(16): 167697, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35753527

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily impacting motor neurons. Mutations in superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS. Several of these mutations lead to misfolding or toxic gain of function in the SOD1 protein. Recently, we reported that misfolded SOD1 interacts with TNF receptor-associated factor 6 (TRAF6) in the SOD1G93A rat model of ALS. Further, we showed in cultured cells that several mutant SOD1 proteins, but not wildtype SOD1 protein, interact with TRAF6 via the MATH domain. Here, we sought to uncover the structural details of this interaction through molecular dynamics (MD) simulations of a dimeric model system, coarse grained using the AWSEM force field. We used direct MD simulations to identify buried residues, and predict binding poses by clustering frames from the trajectories. Metadynamics simulations were also used to deduce preferred binding regions on the protein surfaces from the potential of the mean force in orientation space. Well-folded SOD1 was found to bind TRAF6 via co-option of its native homodimer interface. However, if loops IV and VII of SOD1 were disordered, as typically occurs in the absence of stabilizing Zn2+ ion binding, these disordered loops now participated in novel interactions with TRAF6. On TRAF6, multiple interaction hot-spots were distributed around the equatorial region of the MATH domain beta barrel. Expression of TRAF6 variants with mutations in this region in cultured cells demonstrated that TRAF6T475 facilitates interaction with different SOD1 mutants. These findings contribute to our understanding of the disease mechanism and uncover potential targets for the development of therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase-1 , TNF Receptor-Associated Factor 6 , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Mutation , Protein Binding , Protein Domains , Protein Folding , Rats , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , TNF Receptor-Associated Factor 6/chemistry
2.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32029478

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/metabolism , TNF Receptor-Associated Factor 6/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Antibodies/immunology , Cell Line , Disease Models, Animal , Mitochondria/metabolism , Mutagenesis, Site-Directed , NF-kappa B/metabolism , Protein Aggregates , Protein Folding , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Transgenic , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/immunology , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/genetics , Ubiquitination
4.
Brain ; 141(5): 1320-1333, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29562314

ABSTRACT

See Fratta and Isaacs (doi:10.1093/brain/awy091) for a scientific commentary on this article.The RNA binding proteins TDP-43 (encoded by TARDBP) and hnRNP A1 (HNRNPA1) are each mutated in certain amyotrophic lateral sclerosis cases and are often mislocalized in cytoplasmic aggregates within motor neurons of affected patients. Cytoplasmic inclusions of TDP-43, which are accompanied by a depletion of nuclear TDP-43, are observed in most amyotrophic lateral sclerosis cases and nearly half of frontotemporal dementia cases. Here, we report that TDP-43 binds HNRNPA1 pre-mRNA and modulates its splicing, and that depletion of nuclear TDP-43 results in increased inclusion of a cassette exon in the HNRNPA1 transcript, and consequently elevated protein levels of an isoform containing an elongated prion-like domain, referred to as hnRNP A1B. Combined in vivo and in vitro approaches demonstrated greater fibrillization propensity for hnRNP A1B, which drives protein aggregation and is toxic to cells. Moreover, amyotrophic lateral sclerosis patients with documented TDP-43 pathology showed neuronal hnRNP A1B cytoplasmic accumulation, indicating that TDP-43 mislocalization may contribute to neuronal vulnerability and loss via altered HNRNPA1 pre-mRNA splicing and function. Given that TDP-43 and hnRNP A1 each bind, and thus modulate, a third of the transcriptome, our data suggest a much broader disruption in RNA metabolism than previously considered.


Subject(s)
Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Protein Aggregation, Pathological/metabolism , Alternative Splicing/drug effects , Cell Death/drug effects , Cell Death/genetics , Cytoplasm/drug effects , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Dactinomycin/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Immunoprecipitation , Motor Neurons/drug effects , Motor Neurons/metabolism , Mutation/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Oligopeptides/genetics , Oligopeptides/metabolism , RNA Splice Sites/drug effects , RNA Splice Sites/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spinal Cord/pathology , Transfection
5.
Acta Neuropathol Commun ; 4(1): 43, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27121871

ABSTRACT

Approximately 20 % of familial Amyotrophic Lateral Sclerosis (ALS) is caused by mutations in superoxide dismutase (SOD1), which leads to misfolding of the SOD1 protein, resulting in a toxic gain of function. Several conformation-restricted antibodies have been generated that specifically recognize misfolded SOD1 protein, and have been used as therapeutics in pre-clinical models. Misfolded SOD1 selectively associates with spinal cord mitochondria in SOD1 rodent models. Using the SOD1(G93A) rat model, we find that SOD1 conformational specific antibodies AMF7-63 and DSE2-3H1 labeled a fibrillar network concentrated in the anterior horn; while A5C3, B8H10, C4F6 and D3H5 labeled motor neurons as well as puncta in the neuropil. There is a time-dependent accumulation of misfolded SOD1 at the surface of spinal cord mitochondria with AMF7-63-labeled mitochondria having increased volume in contrast to a mitochondrial subset labeled with B8H10. In spinal cord homogenates and isolated mitochondria, AMF7-63, DSE2-3H1 and B8H10 detect misfolded SOD1 aggregates. SOD1 that lacks its metal cofactors has an increased affinity for naïve mitochondria and misfolded SOD1 antibodies B8H10 and DSE2-3H1 readily detect demetalated mutant and wild-type SOD1. Together, these data suggest that multiple non-native species of misfolded SOD1 may exist, some of which are associated with mitochondrial damage. Conformational antibodies are invaluable tools to identify and characterize the variation in misfolded SOD1 species with regards to biochemical characteristics and toxicity. This information is highly relevant to the further development of these reagents as therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Mitochondria/metabolism , Protein Folding , Superoxide Dismutase-1/metabolism , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Antibodies/metabolism , Disease Models, Animal , Female , Humans , Male , Metals/metabolism , Mitochondria/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Rats, Transgenic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...