Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4095, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750021

ABSTRACT

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Cell Nucleus , Chromatin , Mesenchymal Stem Cells , Actins/metabolism , Chromatin/metabolism , Cell Nucleus/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation , Cytochalasin D/pharmacology , Histones/metabolism , Humans , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Mice , Chromatin Assembly and Disassembly
2.
Obes Facts ; 17(2): 145-157, 2024.
Article in English | MEDLINE | ID: mdl-38224679

ABSTRACT

INTRODUCTION: Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS: Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS: Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid ß-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS: Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.


Subject(s)
Adiposity , Osteoporosis , Mice , Animals , Female , Bone Marrow/metabolism , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Body Weight , Osteoporosis/metabolism , Diet, High-Fat/adverse effects
3.
Stem Cells ; 40(4): 423-434, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35278073

ABSTRACT

Mesenchymal stem cells (MSCs) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, ß-catenin, and yes-associated protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles × 2%) and static (1 × 2% hold) strain on nuclear translocation of ß-catenin and YAP1 at 3 hours after force application. Dynamic strain induced nuclear accumulation of ß-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced ß-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid did not increase nuclear content of ß-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds ß-catenin, we considered whether ß-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both ß-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of ß-catenin via mechanisms used for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, ß-catenin, and YAP1.


Subject(s)
Mesenchymal Stem Cells , beta Catenin , Actins/metabolism , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Mesenchymal Stem Cells/metabolism , beta Catenin/metabolism
4.
Int J Mol Sci ; 22(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205295

ABSTRACT

Mesenchymal stem cells (MSCs) maintain the musculoskeletal system by differentiating into multiple lineages, including osteoblasts and adipocytes. Mechanical signals, including strain and low-intensity vibration (LIV), are important regulators of MSC differentiation via control exerted through the cell structure. Lamin A/C is a protein vital to the nuclear architecture that supports chromatin organization and differentiation and contributes to the mechanical integrity of the nucleus. We investigated whether lamin A/C and mechanoresponsiveness are functionally coupled during adipogenesis in MSCs. siRNA depletion of lamin A/C increased the nuclear area, height, and volume and decreased the circularity and stiffness. Lamin A/C depletion significantly decreased markers of adipogenesis (adiponectin, cellular lipid content) as did LIV treatment despite depletion of lamin A/C. Phosphorylation of focal adhesions in response to mechanical challenge was also preserved during loss of lamin A/C. RNA-seq showed no major adipogenic transcriptome changes resulting from LIV treatment, suggesting that LIV regulation of adipogenesis may not occur at the transcriptional level. We observed that during both lamin A/C depletion and LIV, interferon signaling was downregulated, suggesting potentially shared regulatory mechanism elements that could regulate protein translation. We conclude that the mechanoregulation of adipogenesis and the mechanical activation of focal adhesions function independently from those of lamin A/C.


Subject(s)
Adipogenesis , Focal Adhesions/physiology , Lamin Type A/physiology , Mesenchymal Stem Cells/physiology , Animals , Elastic Modulus , Interferons/metabolism , Male , Membrane Proteins/metabolism , Mice , Signal Transduction , Telomere-Binding Proteins/metabolism , Vibration
5.
JBMR Plus ; 5(3): e10450, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33778320

ABSTRACT

Use of the selective estrogen receptor modulator Tamoxifen (TAM) is a mainstay to induce conditional expression of Cre recombinase in transgenic laboratory mice. To excise ß-catenin fl/fl in 28-day-old male and female Prrx1-CreER/ß-catenin fl/fl mice (C57BL/6), we utilized TAM at 150 mg/kg; despite ß-catenin knockout in MSC, we found a significant increase in trabecular and cortical bone volume in all genders. Because TAM was similarly anabolic in KO and control mice, we investigated a dose effect on bone formation by treating wild-type mice (WT C57BL/6, 4 weeks) with TAM (total dose 0, 20, 40, 200 mg/kg via four injections). TAM increased bone in a dose-dependent manner analyzed by micro-computed tomography (µCT), which showed that, compared to control, 20 mg/kg TAM increased femoral bone volume fraction (bone volume/total volume [BV/TV]) (21.6% ± 1.5% to 33% ± 2.5%; 153%, p < 0.005). With TAM 40 mg/kg and 200 mg/kg, BV/TV increased to 48.1% ± 4.4% (223%, p < 0.0005) and 58% ± 3.8% (269%, p < 0.0001) respectively, compared to control. Osteoblast markers increased with 200 mg/kg TAM: Dlx5 (224%, p < 0.0001), Alp (166%, p < 0.0001), Bglap (223%, p < 0.0001), and Sp7 (228%, p < 0.0001). Osteoclasts per bone surface (Oc#/BS) nearly doubled at the lowest TAM dose (20 mg/kg), but decreased to <20% control with 200 mg/kg TAM. Our data establish that use of TAM at even very low doses to excise a floxed target in postnatal mice has profound effects on trabecular and cortical bone formation. As such, TAM treatment is a major confounder in the interpretation of bone phenotypes in conditional gene knockout mouse models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

6.
Front Endocrinol (Lausanne) ; 12: 782194, 2021.
Article in English | MEDLINE | ID: mdl-35145475

ABSTRACT

Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via µCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.


Subject(s)
Adipose Tissue/metabolism , Bone Marrow/metabolism , Cancellous Bone/metabolism , Femur/metabolism , GTP-Binding Protein gamma Subunits/genetics , Lipodystrophy/metabolism , Physical Conditioning, Animal , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Animals , Body Weight , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Cancellous Bone/diagnostic imaging , Diaphyses/diagnostic imaging , Disease Models, Animal , Epididymis/metabolism , Epididymis/pathology , Femur/diagnostic imaging , Lipodystrophy/diagnostic imaging , Lipodystrophy/genetics , Lipodystrophy/pathology , Male , Mice , Mice, Knockout , Organ Size , Perilipin-1/genetics , X-Ray Microtomography
7.
J Bone Miner Res ; 35(6): 1149-1162, 2020 06.
Article in English | MEDLINE | ID: mdl-32022326

ABSTRACT

During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. ß-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that ß-catenin was additive with cytoskeletal signals to prevent adipogenesis, and ß-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. ß-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with ß-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of ß-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of ß-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, ß-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to ß-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Bone Marrow Cells , Enhancer of Zeste Homolog 2 Protein , Mesenchymal Stem Cells , beta Catenin/metabolism , Animals , Bone Marrow Cells/metabolism , Catenins , Cell Differentiation , Enhancer of Zeste Homolog 2 Protein/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis , Polycomb Repressive Complex 2/metabolism , Wnt Signaling Pathway
8.
J Bone Miner Res ; 35(1): 106-115, 2020 01.
Article in English | MEDLINE | ID: mdl-31509274

ABSTRACT

Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by µCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (-121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Subject(s)
Bone Marrow , Caloric Restriction , Adipocytes , Adipose Tissue , Animals , Bone Marrow/diagnostic imaging , Bone and Bones/diagnostic imaging , Female , Mice
9.
Stem Cells ; 38(1): 102-117, 2020 01.
Article in English | MEDLINE | ID: mdl-31648392

ABSTRACT

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Subject(s)
Lamin Type B/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , NADPH Dehydrogenase/metabolism , Actins/metabolism , Animals , Cell Differentiation/physiology , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Gene Knockdown Techniques , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , NADPH Dehydrogenase/deficiency , NADPH Dehydrogenase/genetics , Nuclear Envelope/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis
10.
Stem Cells Dev ; 27(16): 1136-1145, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29882479

ABSTRACT

Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early timepoints in bone marrow-derived MSCs and also initiates a robust osteogenic differentiation program in adipose tissue-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose tissue-derived MSCs (hAMSCs), human bone marrow-derived MSCs (hBMSCs), and mouse bone marrow-derived MSCs (mBMSCs) revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation-related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes-VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH-which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo pathway-related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 small interfering RNA depletion reduces mineralization of hAMSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment toward the bone lineage.


Subject(s)
Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Transcription Factors/genetics , Actin Cytoskeleton/genetics , Adipose Tissue/cytology , Adipose Tissue/drug effects , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cytochalasin D/pharmacology , Gene Expression Regulation, Developmental/drug effects , High-Throughput Nucleotide Sequencing , Humans , Mesenchymal Stem Cells/drug effects , Mice , Osteogenesis/drug effects
11.
J Biomech ; 74: 32-40, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29691054

ABSTRACT

ßcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of ßcatenin in the cytoplasm has been well studied but ßcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of ßcatenin destruction complex element GSK3ß (glycogen synthase kinase 3ß) to increase nuclear ßcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3ß due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, ßcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of ßcatenin, resulting in decreased nuclear ßcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in ßcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of ßcatenin.


Subject(s)
Cytoskeleton/metabolism , Mechanical Phenomena , Nuclear Matrix/metabolism , beta Catenin/metabolism , Active Transport, Cell Nucleus , Animals , Biomechanical Phenomena , Cell Movement , Humans , Microtubules/metabolism
12.
Stem Cells Transl Med ; 7(2): 197-209, 2018 02.
Article in English | MEDLINE | ID: mdl-29280310

ABSTRACT

Strategies for musculoskeletal tissue regeneration apply adult mesenchymal stem/stromal cells (MSCs) that can be sourced from bone marrow- and lipo-aspirates. Adipose tissue-derived MSCs are more easily harvested in the large quantities required for skeletal tissue-engineering approaches, but are generally considered to be less osteogenic than bone marrow MSCs. Therefore, we tested a new molecular strategy to improve their osteogenic lineage-differentiation potential using the fungal metabolite cytochalasin D (CytoD). We show that CytoD, which may function by redistributing the intracellular location of ß-actin (ACTB), is a potent osteogenic stimulant as reflected by significant increases in alkaline phosphatase activity, extracellular matrix mineralization, and osteoblast-related gene expression (e.g., RUNX2, ALPL, SPARC, and TGFB3). RNA sequencing analyses of MSCs revealed that acute CytoD treatment (24 hours) stimulates a broad program of osteogenic biomarkers and epigenetic regulators. CytoD decreases mRNA and protein levels of the Polycomb chromatin regulator Enhancer of Zeste Homolog 2 (EZH2), which controls heterochromatin formation by mediating trimethylation of histone 3 lysine 27 (H3K27me3). Reduced EZH2 expression decreases cellular H3K27me3 marks indicating a global reduction in heterochromatin. We conclude that CytoD is an effective osteogenic stimulant that mechanistically functions by blocking both cytoplasmic actin polymerization and gene-suppressive epigenetic mechanisms required for the acquisition of the osteogenic phenotype in adipose tissue-derived MSCs. This finding supports the use of CytoD in advancing the osteogenic potential of MSCs in skeletal regenerative strategies. Stem Cells Translational Medicine 2018;7:197-209.


Subject(s)
Adipose Tissue/cytology , Cytochalasin D/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Fungi/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Adipose Tissue/metabolism , Cell Differentiation/physiology , Cells, Cultured , Epigenesis, Genetic/physiology , Histones/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteoblasts/physiology , Tissue Engineering/methods
13.
Bone ; 107: 172-180, 2018 02.
Article in English | MEDLINE | ID: mdl-29208526

ABSTRACT

The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSCs), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactivators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAP18 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAP18 null MSCs exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAP18 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an "off state" and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAP18 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment.


Subject(s)
Adipogenesis/physiology , GTPase-Activating Proteins/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Rho Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , Adaptation, Physiological/physiology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/physiology , Cell Lineage , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Stress, Mechanical , rhoA GTP-Binding Protein
14.
Trans Am Clin Climatol Assoc ; 128: 180-192, 2017.
Article in English | MEDLINE | ID: mdl-28790502

ABSTRACT

Stem cells respond to environmental signals that induce their differentiation to cells that make up specialized tissues and organs. Our laboratory has focused on bone marrow mesenchymal stem cells (MSCs) that supply bone osteoblasts and marrow adipocytes, an output that appears to be reciprocal. Case in point: exercise promotes osteogenesis and bone formation, and inhibits marrow adipose accrual. A mechanically induced signal pathway concentrating on preserving ß-catenin also causes increased structure of the actin cytoskeleton, both of which inhibit adipogenesis. Recently we showed that intranuclear actin is as important to MSC lineage decisions as cytoplasmic actin. This opens up new areas for understanding gene expression in stem cells.


Subject(s)
Actins/physiology , Cell Differentiation/physiology , Cell Nucleus/physiology , Mesenchymal Stem Cells/physiology , Animals , Bone Marrow/physiology , Bone and Bones/physiology , Humans , Motor Activity
15.
J Bone Miner Res ; 32(8): 1692-1702, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28436105

ABSTRACT

The relationship between marrow adipose tissue (MAT) and bone health is poorly understood. We used running exercise to ask whether obesity-associated MAT can be attenuated via exercise and whether this correlates with gains in bone quantity and quality. C57BL/6 mice were divided into diet-induced obesity (DIO, n = 14) versus low-fat diet (LFD, n = 14). After 3 months, 16-week-old mice were allocated to an exercise intervention (LFD-E, DIO-E) or a control group (LFD, DIO) for 6 weeks (4 groups, n = 7/group). Marrow adipocyte area was 44% higher with obesity (p < 0.0001) and after exercise 33% lower in LFD (p < 0.0001) and 39% lower in DIO (p < 0.0001). In LFD, exercise did not affect adipocyte number; however, in DIO, the adipocyte number was 56% lower (p < 0.0001). MAT was 44% higher in DIO measured by osmium-µCT, whereas exercise associated with reduced MAT (-23% in LFD, -48% in DIO, p < 0.05). MAT was additionally quantified by 9.4TMRI, and correlated with osmium-µCT (r = 0.645; p < 0.01). Consistent with higher lipid beta oxidation, perilipin 3 (PLIN3) rose with exercise in tibial mRNA (+92% in LFD, +60% in DIO, p < 0.05). Tibial µCT-derived trabecular bone volume (BV/TV) was not influenced by DIO but responded to exercise with an increase of 19% (p < 0.001). DIO was associated with higher cortical periosteal and endosteal volumes of 15% (p = 0.012) and 35% (p < 0.01), respectively, but Ct.Ar/Tt.Ar was lower by 2.4% (p < 0.05). There was a trend for higher stiffness (N/m) in DIO, and exercise augmented this further. In conclusion, obesity associated with increases in marrow lipid-measured by osmium-µCT and MRI-and partially due to an increase in adipocyte size, suggesting increased lipid uptake into preexisting adipocytes. Exercise associated with smaller adipocytes and less bone lipid, likely invoking increased ß-oxidation and basal lipolysis as evidenced by higher levels of PLIN3. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Bone Marrow Cells/metabolism , Lipolysis , Obesity/metabolism , Physical Conditioning, Animal , X-Ray Microtomography , Adipose Tissue/diagnostic imaging , Animals , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Female , Mice , Obesity/chemically induced , Obesity/diagnostic imaging , Obesity/physiopathology
16.
Stem Cells ; 35(6): 1624-1635, 2017 06.
Article in English | MEDLINE | ID: mdl-28371128

ABSTRACT

Actin structure contributes to physiologic events within the nucleus to control mesenchymal stromal cell (MSC) differentiation. Continuous cytochalasin D (Cyto D) disruption of the MSC actin cytoskeleton leads to osteogenic or adipogenic differentiation, both requiring mass transfer of actin into the nucleus. Cyto D remains extranuclear, thus intranuclear actin polymerization is potentiated by actin transfer: we asked whether actin structure affects differentiation. We show that secondary actin filament branching via the Arp2/3 complex is required for osteogenesis and that preventing actin branching stimulates adipogenesis, as shown by expression profiling of osteogenic and adipogenic biomarkers and unbiased RNA-seq analysis. Mechanistically, Cyto D activates osteoblast master regulators (e.g., Runx2, Sp7, Dlx5) and novel coregulated genes (e.g., Atoh8, Nr4a3, Slfn5). Formin-induced primary actin filament formation is critical for Arp2/3 complex recruitment: osteogenesis is prevented by silencing of the formin mDia1, but not its paralog mDia2. Furthermore, while inhibition of actin, branching is a potent adipogenic stimulus, silencing of either mDia1 or mDia2 blocks adipogenic gene expression. We propose that mDia1, which localizes in the cytoplasm of multipotential MSCs and traffics into the nucleus after cytoskeletal disruption, joins intranuclear mDia2 to facilitate primary filament formation before mediating subsequent branching via Arp2/3 complex recruitment. The resulting intranuclear branched actin network specifies osteogenic differentiation, while actin polymerization in the absence of Arp2/3 complex-mediated secondary branching causes adipogenic differentiation. Stem Cells 2017;35:1624-1635.


Subject(s)
Actins/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Animals , Cell Differentiation/drug effects , Cell Nucleus/drug effects , Cytochalasin D/pharmacology , Gene Silencing , Indoles/pharmacology , Mesenchymal Stem Cells/drug effects , Mice , Osteogenesis/drug effects , PPAR gamma/metabolism , Polymerization
17.
Article in English | MEDLINE | ID: mdl-27445983

ABSTRACT

Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.

18.
J Biol Chem ; 291(34): 17829-47, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27402842

ABSTRACT

Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPß, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPß binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies.


Subject(s)
Adipogenesis/physiology , Bone Marrow Cells/metabolism , Cell Differentiation/physiology , Epigenesis, Genetic/physiology , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Adipocytes/cytology , Adipocytes/metabolism , Animals , Bone Marrow Cells/cytology , Female , Mesenchymal Stem Cells/cytology , Mice , Osteoblasts/cytology , Osteoblasts/metabolism
19.
Stem Cells ; 33(10): 3065-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26140478

ABSTRACT

Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for clinical objectives of forming bone.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Actin Cytoskeleton/genetics , Actin Depolymerizing Factors/metabolism , Animals , Cell Lineage/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Cytochalasin D/administration & dosage , Mice , Phalloidine/metabolism , Protein Transport/genetics
20.
Endocrinology ; 156(8): 2753-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26052898

ABSTRACT

The contribution of marrow adipose tissue (MAT) to skeletal fragility is poorly understood. Peroxisome proliferator-activated receptor (PPAR)γ agonists, associated with increased fractures in diabetic patients, increase MAT. Here, we asked whether exercise could limit the MAT accrual and increase bone formation in the setting of PPARγ agonist treatment. Eight-week-old female C57BL/6 mice were treated with 20-mg/kg · d rosiglitazone (Rosi) and compared with control (CTL) animals. Exercise groups ran 12 km/d when provided access to running wheels (CTL exercise [CTL-E], Rosi-E). After 6 weeks, femoral MAT (volume of lipid binder osmium) and tibial bone morphology were assessed by microcomputer tomography. Rosi was associated with 40% higher femur MAT volume compared with CTL (P < .0001). Exercise suppressed MAT volume by half in CTL-E mice compared with CTL (P < .01) and 19% in Rosi-E compared with Rosi (P < .0001). Rosi treatment increased fat markers perilipin and fatty acid synthase mRNA by 4-fold (P < .01). Exercise was associated with increased uncoupling protein 1 mRNA expression in both CTL-E and Rosi-E groups (P < .05), suggestive of increased brown fat. Rosi increased cortical porosity (P < .0001) but did not significantly impact trabecular or cortical bone quantity. Importantly, exercise induction of trabecular bone volume was not prevented by Rosi (CTL-E 21% > CTL, P < .05; Rosi-E 26% > Rosi, P < .01). In summary, despite the Rosi induction of MAT extending well into the femoral diaphysis, exercise was able to significantly suppress MAT volume and induce bone formation. Our results suggest that the impact of PPARγ agonists on bone and marrow health can be partially mitigated by exercise.


Subject(s)
Bone Marrow/drug effects , Bone Marrow/metabolism , Lipid Metabolism/drug effects , PPAR gamma/agonists , Physical Conditioning, Animal/physiology , Thiazolidinediones/pharmacology , Adipogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adiposity/drug effects , Animals , Bone Density/drug effects , Female , Mice , Mice, Inbred C57BL , Osteogenesis/drug effects , Rosiglitazone
SELECTION OF CITATIONS
SEARCH DETAIL
...