Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Metabolism ; 152: 155771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184165

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS: Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκß), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκß and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION: STAT3-NFκß signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mitochondrial Diseases , Signal Transduction , Animals , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Liver Neoplasms/complications , Liver Neoplasms/metabolism , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism
3.
J Liposome Res ; 33(1): 65-76, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35521749

ABSTRACT

Abiraterone acetate (ABRTA) is clinically beneficial in management of metastatic castration-resistant prostate cancer (PC-3). With highlighted low solubility and permeability, orally hampered treatment of ABRTA necessitate high dose to achieve therapeutic efficacy. To triumph these challenges, we aimed to develop intestinal lymphatic transport facilitating lipid-based delivery to enhance bioavailability. ABRTA-containing self-nano emulsified drug delivery (ABRTA-SNEDDS) was statistically optimized by D-optimal design using design expert. Optimized formulation was characterized for particle size, thermodynamic stability, in vitro release, in vivo bioavailability, intestinal lymphatic transport, in vitro cytotoxic effect, anti-metastatic activity, and apoptosis study. Moreover, hemolysis and histopathology studies have been performed to assess pre-clinical safety. Nano-sized particles and successful saturated drug loading were obtained for optimized formulation. In vitro release upto 98.61 ± 3.20% reveal effective release of formulation at intestinal pH 6.8. ABRTA-SNEDDS formulation shows enhanced in vivo exposure of Abiraterone (2.5-fold) than ABRTA suspension in Sprague-Dawley rats. In vitro efficacy in PC-3 cell line indicates 3.69-fold higher therapeutic potential of nano drug delivery system. Hemolysis and histopathology study indicates no significant toxicities to red blood cells and tissues, respectively. Apparently, an opportunistic strategy to increasing bioavailability of ABRTA via intestinal lymphatic transport will create a viable platform in rapidly evolving chemotherapy. Enhanced translational utility of delivery was also supported through in vitro therapeutic efficacy and safety assessments. HighlightsAbiraterone acetate is a prostate cancer drug, impeded with low bioavailability.ABRTA loaded in self nano emulsifying drug delivery enhanced its bioavailability.Intestinal lymphatic transport played role in enhanced bioavailability of ABRTA.ABRTA-SNEDDS enhanced in vitro cytotoxic activity of ABRTA.ABRTA-SNEDDS found safe in preclinical safety evaluations.


Subject(s)
Abiraterone Acetate , Antineoplastic Agents , Drug Delivery Systems , Animals , Male , Rats , Abiraterone Acetate/administration & dosage , Administration, Oral , Antineoplastic Agents/administration & dosage , Biological Availability , Hemolysis , Liposomes , Nanoparticles/chemistry , Rats, Sprague-Dawley , Lymph/metabolism , Cell Line, Tumor
4.
Phytother Res ; 35(6): 3325-3336, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33624898

ABSTRACT

The aim of this study is to explore the possible pharmacological effects of fruit waste that may have a key role in converting the fruit waste into pharmaceutical agents. Citrus limetta (Rutaceae) is an important commercial citrus fruit crops used by juice processing industries. C. limetta peels are perishable waste material, which creates a big challenge in juice processing industries. Initial pharmaco-chemical profile of peels' extracts revealed that the ethanol extract (ClPs) has promising anti-inflammatory activity and rich in hesperidin content. In vivo experimental pharmacology profile of ClPs against arthritis and related complications revealed that oral administration of ClPs significantly reduced the arthritis score and arthritis index in elbow and knee joints against collagen-induced arthritis (CIA) in rats. Biochemical parameters include pro-inflammatory cytokines (TNF-α, IL-6, and IL-17A), and C-RP level in blood serum of CIA rats further confirmed the anti-arthritic profile of ClPs. Further individual experiments related to arthritis-related complications in experimental animals demonstrated the analgesic, anti-inflammatory, and antipyretic potential of ClPs in dose-dependent manner. The result of this study suggests the suitability of ClPs as a drug-like candidate for further investigation toward the management of arthritis and related complications.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Citrus/chemistry , Hesperidin/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/blood , Ethanol/chemistry , Female , Fruit , Male , Mice , Plant Extracts/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...