Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Psychiatry ; 79(7): 677-689, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35583903

ABSTRACT

Importance: Approaches are needed to stratify individuals in early psychosis stages beyond positive symptom severity to investigate specificity related to affective and normative variation and to validate solutions with premorbid, longitudinal, and genetic risk measures. Objective: To use machine learning techniques to cluster, compare, and combine subgroup solutions using clinical and brain structural imaging data from early psychosis and depression stages. Design, Setting, and Participants: A multisite, naturalistic, longitudinal cohort study (10 sites in 5 European countries; including major follow-up intervals at 9 and 18 months) with a referred patient sample of those with clinical high risk for psychosis (CHR-P), recent-onset psychosis (ROP), recent-onset depression (ROD), and healthy controls were recruited between February 1, 2014, to July 1, 2019. Data were analyzed between January 2020 and January 2022. Main Outcomes and Measures: A nonnegative matrix factorization technique separately decomposed clinical (287 variables) and parcellated brain structural volume (204 gray, white, and cerebrospinal fluid regions) data across CHR-P, ROP, ROD, and healthy controls study groups. Stability criteria determined cluster number using nested cross-validation. Validation targets were compared across subgroup solutions (premorbid, longitudinal, and schizophrenia polygenic risk scores). Multiclass supervised machine learning produced a transferable solution to the validation sample. Results: There were a total of 749 individuals in the discovery group and 610 individuals in the validation group. Individuals included those with CHR-P (n = 287), ROP (n = 323), ROD (n = 285), and healthy controls (n = 464), The mean (SD) age was 25.1 (5.9) years, and 702 (51.7%) were female. A clinical 4-dimensional solution separated individuals based on positive symptoms, negative symptoms, depression, and functioning, demonstrating associations with all validation targets. Brain clustering revealed a subgroup with distributed brain volume reductions associated with negative symptoms, reduced performance IQ, and increased schizophrenia polygenic risk scores. Multilevel results distinguished between normative and illness-related brain differences. Subgroup results were largely validated in the external sample. Conclusions and Relevance: The results of this longitudinal cohort study provide stratifications beyond the expression of positive symptoms that cut across illness stages and diagnoses. Clinical results suggest the importance of negative symptoms, depression, and functioning. Brain results suggest substantial overlap across illness stages and normative variation, which may highlight a vulnerability signature independent from specific presentations. Premorbid, longitudinal, and genetic risk validation suggested clinical importance of the subgroups to preventive treatments.


Subject(s)
Psychotic Disorders , Schizophrenia , Adult , Brain/diagnostic imaging , Cluster Analysis , Female , Humans , Longitudinal Studies , Male , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
2.
Br J Psychiatry ; : 1-17, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35152923

ABSTRACT

BACKGROUND: Clinical high-risk states for psychosis (CHR) are associated with functional impairments and depressive disorders. A previous PRONIA study predicted social functioning in CHR and recent-onset depression (ROD) based on structural magnetic resonance imaging (sMRI) and clinical data. However, the combination of these domains did not lead to accurate role functioning prediction, calling for the investigation of additional risk dimensions. Role functioning may be more strongly associated with environmental adverse events than social functioning. AIMS: We aimed to predict role functioning in CHR, ROD and transdiagnostically, by adding environmental adverse events-related variables to clinical and sMRI data domains within the PRONIA sample. METHOD: Baseline clinical, environmental and sMRI data collected in 92 CHR and 95 ROD samples were trained to predict lower versus higher follow-up role functioning, using support vector classification and mixed k-fold/leave-site-out cross-validation. We built separate predictions for each domain, created multimodal predictions and validated them in independent cohorts (74 CHR, 66 ROD). RESULTS: Models combining clinical and environmental data predicted role outcome in discovery and replication samples of CHR (balanced accuracies: 65.4% and 67.7%, respectively), ROD (balanced accuracies: 58.9% and 62.5%, respectively), and transdiagnostically (balanced accuracies: 62.4% and 68.2%, respectively). The most reliable environmental features for role outcome prediction were adult environmental adjustment, childhood trauma in CHR and childhood environmental adjustment in ROD. CONCLUSIONS: Findings support the hypothesis that environmental variables inform role outcome prediction, highlight the existence of both transdiagnostic and syndrome-specific predictive environmental adverse events, and emphasise the importance of implementing real-world models by measuring multiple risk dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...