Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(18): 4301-4314, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38682809

ABSTRACT

Deoxyribonucleic acid (DNA) stability is a prerequisite in many applications, ranging from DNA-based vaccines and data storage to gene therapy. However, the strategies to enhance DNA stability are limited, and the underlying mechanisms are poorly understood. Ionic liquids (ILs), molten salts of organic cations and organic/inorganic anions, are showing tremendous prospects in myriads of applications. With a judicious choice of constituent ions, the protic nature of ILs can be tuned. In this work, we investigate the relative stability of full-length genomic DNA in aqueous IL solutions of increasing protic nature. Our experimental measurements show that the protic ionic liquids (PILs) enhance the DNA melting temperature significantly while unaltering its native B-conformation. Molecular dynamics simulations and quantum mechanical calculation results suggest that the intramolecular Watson-Crick H-bonding in DNA remains unaffected and, in addition, the PILs induce stronger H-bonding networks in solution through their ability to make multiple intermolecular H-bonds with the nucleobases and among its constituent ions, thus aiding greater DNA stability. The detailed understanding obtained from this study could bring about the much-awaited breakthrough in improved DNA stability for its sustained use in the aforesaid applications!


Subject(s)
DNA , Hydrogen Bonding , Ionic Liquids , Molecular Dynamics Simulation , Protons , Ionic Liquids/chemistry , DNA/chemistry , Nucleic Acid Conformation
2.
ACS Omega ; 8(11): 9748-9763, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969469

ABSTRACT

Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.

3.
Biomedicines ; 12(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38275365

ABSTRACT

Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer's disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in various neurodegenerative diseases as it transports multiple cargoes along the microtubules (MT). Kinesin-1 proteins cannot progress along MTs due to an accumulation of tau on their surfaces. Although kinesin-1-mediated neuronal transport dysfunction is well-documented in other neurodegenerative diseases, its role in AD has received less attention. Very recently, we have shown that knocking down and knocking out of kinesin-1 heavy chain (KIF5B KO) expression significantly reduced the level and stability of tau in cells and tau transgenic mice, respectively. Here, we report that tau interacts with the motor domain of KIF5B in vivo and in vitro, possibly through its microtubule-binding repeat domain. This interaction leads to the inhibition of the ATPase activity of the motor domain. In addition, the KIF5B KO results in autophagy initiation, which subsequently assists in tau degradation. The mechanisms behind KIF5B KO-mediated tau degradation seem to involve its interaction with tau, promoting the trafficking of tau through retrograde transport into autophagosomes for subsequent lysosomal degradation of tau. Our results suggest how KIF5B removal facilitates the movement of autophagosomes toward lysosomes for efficient tau degradation. This mechanism can be enabled through the downregulation of kinesin-1 or the disruption of the association between kinesin-1 and tau, particularly in cases when neurons perceive disturbances in intercellular axonal transport.

4.
Front Mol Biosci ; 9: 1030534, 2022.
Article in English | MEDLINE | ID: mdl-36387280

ABSTRACT

Emerging evidence from Alzheimer's disease (AD) patients suggests that reducing tau pathology can restore cognitive and memory loss. To reduce tau pathology, it is critical to find brain-permeable tau-degrading small molecules that are safe and effective. HDAC6 inhibition has long been considered a safe and effective therapy for tau pathology. Recently, we identified protopine as a dibenzazecine alkaloid with anti-HDAC6 and anti-AD activities. In this study, we synthesized and tested novel protopine derivatives for their pharmacological action against AD. Among them, bromo-protopine (PRO-Br) demonstrated a two-fold increase in anti-HDAC6 activity and improved anti-tau activities compared to the parent compound in both in vitro and in vivo AD models. Furthermore, molecular docking results showed that PRO-Br binds to HDAC6, with a ∆G value of -8.4 kcal/mol and an IC50 value of 1.51 µM. In neuronal cell lines, PRO-Br reduced pathological tau by inducing chaperone-mediated autophagy (CMA). In 3xTg-AD and P301S tau mice models, PRO-Br specifically decreased the pathogenic hyperphosphorylated tau clumps and led to the restoration of memory functions. In addition, PRO-Br treatment promoted the clearance of pathogenic tau by enhancing the expression of molecular chaperones (HSC70) and lysosomal markers (LAMP2A) via CMA in AD models. Our data strongly suggest that administration of the brain-permeable protopine derivative PRO-Br, could be a viable anti-tau therapeutic strategy for AD.

5.
Phys Chem Chem Phys ; 24(11): 7107-7120, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35262154

ABSTRACT

HIV protease (HIVPR) is a key target in AIDS therapeutics. All ten FDA-approved drugs that compete with substrates in binding to this dimeric enzyme's active site have become ineffective due to the emergence of drug resistant mutants. Blocking the dimerization interface of HIVPR is thus being explored as an alternate strategy. The latest drug, darunavir (DRV), which exhibited a high genetic barrier to viral resistance, is said to have a dual mode of action - (i) binding to the dimeric active site, and (ii) preventing the dimerization by binding to the HIVPR monomer. Despite several reports on DRV complexation with dimeric HIVPR, the mode and mechanism of the binding of DRV to the HIVPR monomer are poorly understood. In this study, we utilized all-atomic MD simulations and umbrella sampling techniques to identify the best possible binding mode of DRV to the monomeric HIVPR and its mechanism of association. The results suggest that DRV binds between the active site and the flap of the monomer, and the flap plays a crucial role in directing the drug to bind and driving the other protein domains to undergo induced fit changes for stronger complexation. The obtained binding mode of DRV was validated by comparing with various mutational data from clinical isolates to reported in vitro mutations. The identified binding pose was also able to successfully reproduce the experimental Ki value in the picomolar range. The residue-level information extracted from this study could accelerate the structure-based drug designing approaches targeting HIVPR dimerization.


Subject(s)
HIV Infections , HIV Protease Inhibitors , Darunavir/pharmacology , Darunavir/therapeutic use , Dimerization , HIV Protease/chemistry , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Humans , Mutation
6.
Elife ; 112022 03 08.
Article in English | MEDLINE | ID: mdl-35257659

ABSTRACT

Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer's disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary.


The formation of plaques of proteins called 'amyloids' in the brain is one of the hallmark characteristics of both Alzheimer's and Parkinson's disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer's can lead to Parkinson's disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids ­ amyloids made of two types of proteins ­ seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.


Subject(s)
Amyloidosis , Peptide Hormones , Amyloid/chemistry , Amyloidogenic Proteins , Animals , Female , Galanin , Humans , Life Cycle Stages , Mammals , Prolactin , Rats
7.
J Phys Chem B ; 126(9): 2014-2026, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35213168

ABSTRACT

Reverse micelle (RM) aggregates have a wide range of applications in various areas of science and technology. A continuous demand exists to replace interfacial surfactant molecules with various nonconventional amphiphiles. Ionic liquid (IL)-like surfactants (IL-surf's) constitute a class of such molecules that are being researched extensively. Here, we have formulated several water/IL-surf/oil microemulsions by optimizing the core droplet size with varying oil phases. The best composition of water/[BMIM][AOT]/IPM ([BMIM][AOT]: 1-butyl-3-methylimidazolium dioctyl sulfosuccinate; IPM: isopropyl myristate) was then analyzed in detail through experimental and computer simulations. Our results from DLS measurements suggest a structural transition from spherical aggregates in the parent water/[Na][AOT]/IPM solution to cylindrical droplets in the IL-surf-based system. The Raman and ATR-FTIR spectral analysis suggest a variation in the microstructure of the water/oil interface due to the differential interaction of the counterions with AOT headgroups and water. Molecular dynamics simulation results provided the direct image of the interface showing a structured versus uneven water/oil interface in [Na][AOT] versus [BMIM][AOT] RMs, where the larger [BMIM] cations weakly bind with the AOT headgroups due to their low charge density. Finally, an application of this IL-surf-based formulation was tested by carrying out a Heck cross-coupling reaction that showed significantly higher yield under milder reaction conditions.


Subject(s)
Ionic Liquids , Pulmonary Surfactants , Dioctyl Sulfosuccinic Acid/chemistry , Excipients , Imidazoles , Ionic Liquids/chemistry , Surface-Active Agents/chemistry , Water/chemistry
8.
J Biomol Struct Dyn ; 40(14): 6405-6414, 2022 09.
Article in English | MEDLINE | ID: mdl-33554754

ABSTRACT

Protein Z (PZ) dependent protease inhibitor (ZPI) is a natural anticoagulant inhibiting blood coagulation proteases fXa and fXIa. Despite being a member of the serpin superfamily, it possesses unique structural features such as activation by PZ, regulating its inhibitory function. In order to understand the Reactive Centre Loop (RCL) dynamics of ZPI, which is absolutely critical for its activity, we performed Molecular Dynamics (MD) simulation on ZPI and its E371 and S359 variants located at important conserved functional sites. Unexpectedly, the RCL of E371 variants, (E371K, E371R, and E371Q), were shown to be very stable due to compensatory interactions at the proximal end of RCL. Interestingly, RCL flexibility was shown to be enhanced in the double mutant K318E-E371K due to the repulsive effect of increased negative charge on top of the breach region. Principal component analysis (PCA) coupled with residue wise interaction network analysis(RIN) revealed correlated motion between the RCL and the PZ binding regions in the WT. However, a loss of regulation in correlated motion between RCL and PZ binding hotspot Tyr240 in the double mutant was also observed. Additionally, the S359F and S359I mutations resulted in increased RCL flexibility owing to the disruption of stabilizing hydrogen bonding interaction at the distal end of strand S5A. Thus, the current study proposes that the overall stabilizing interactions of S5A is a major regulator of proper loop movement of ZPI for its activity. The results would be beneficial to engineer activity compromised ZPI as a prophylactic agent for the treatment of hemophilia.Communicated by Ramaswamy H. Sarma.


Subject(s)
Factor Xa , Serpins , Blood Proteins/chemistry , Factor Xa/chemistry , Kinetics , Molecular Dynamics Simulation , Protease Inhibitors , Protein Binding , Serpins/chemistry , Serpins/genetics , Serpins/metabolism
9.
Phytomedicine ; 96: 153887, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936968

ABSTRACT

BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Animals , Benzophenanthridines , Berberine Alkaloids , Disease Models, Animal , Histone Deacetylase 6/antagonists & inhibitors , Mice , Mice, Transgenic , Molecular Docking Simulation , tau Proteins
10.
Diabetes ; 71(3): 538-553, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34862200

ABSTRACT

Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.


Subject(s)
Cardiovascular Diseases/genetics , Chromogranin A/genetics , Genetic Predisposition to Disease/genetics , Metabolic Diseases/genetics , Amino Acid Sequence , Animals , Catecholamines/blood , Cell Line , Cell Line, Tumor , Chromogranin A/chemistry , Chromogranin A/metabolism , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Genetic Association Studies/methods , Hep G2 Cells , Humans , Hypertension/genetics , India , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Polymorphism, Single Nucleotide/genetics , Rats , Receptor, Insulin/metabolism
11.
Biophys J ; 120(18): 4041-4054, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34390684

ABSTRACT

An outbreak of Zika virus (ZIKV) infections in 2015-16 that caused microcephaly and other congenital abnormalities in newborns prompted intense research across the globe. These studies have suggested that ZIKV can survive high temperatures and harsh physiological conditions, unlike the other flaviviruses such as dengue virus (DENV). In contrast, recent cryo-electron microscopy studies have shown very similar architecture of the ZIKV and DENV envelopes that constitute the primary level of viral protection. Encouraged by these findings, here we attempt to identify the crucial protein residues that make the ZIKV envelope so robust by employing coarse-grained and all-atomic molecular dynamics simulations and computational mutagenesis studies. In accordance with more recent cryo-electron microscopy findings, our simulation results exhibited stable ZIKV envelope protein shell both at 29oC and 40°C, whereas the DENV2 shell loosened up significantly at 40°C. Subsequently, we simulated a series of ZIKV variants to identify the specific domain and residues involved in maintaining the structural integrity of the viral protein shell at high temperatures. Our results suggest that the DIII domain-more specifically, the CD- and FG-loop residues of the ZIKV protein shell-play a crucial role in making the virus envelope thermostable by inducing strong raft-raft interactions. These findings can accelerate the rational design of ZIKV therapeutics.


Subject(s)
Dengue Virus , Zika Virus Infection , Zika Virus , Antibodies, Viral , Cryoelectron Microscopy , Humans , Infant, Newborn , Viral Envelope
12.
J Phys Chem B ; 125(18): 4808-4818, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33914552

ABSTRACT

Ionic liquids (ILs) are designer solvents that find wide applications in various areas. Recently, ILs have been shown to induce the refolding of certain proteins that were previously denatured under the treatment of urea. A molecular-level understanding of the counteracting mechanism of ILs on urea-induced protein denaturation remains elusive. In this study, we employ atomistic molecular dynamics simulations to investigate the ternary urea-water-IL solution in comparison to the aqueous urea solution to understand how the presence of ILs can modulate the structure, energetics, and dynamics of urea-water solutions. Our results show that the ions of the IL used, ethylammonium nitrate (EAN), interact strongly with urea and disrupt the urea aggregates that were known to stabilize the unfolded state of the proteins. Results also suggest a disruption in urea-water interaction that releases more free water molecules in solution. We subsequently strengthened these findings by simulating a model peptide in the absence and presence of EAN, which showed broken versus intact secondary structure in urea solution. Analyses show that these changes were accomplished by the added IL, which enforced a gradual displacement of urea from the peptide surface by water. We propose that the ILs facilitate protein renaturation by breaking down the urea aggregates and increasing the amount of free water molecules around the protein.


Subject(s)
Ionic Liquids , Protein Denaturation , Protein Renaturation , Urea , Water
13.
J Mol Graph Model ; 105: 107894, 2021 06.
Article in English | MEDLINE | ID: mdl-33725641

ABSTRACT

Water can act as catalyst is perhaps the most intriguing property reported of this molecule in the last decade. However, despite being an integral part of many enzyme structures, the role of water in catalyzing enzymatic reactions remains sparsely studied. In a recent study, we have shown that the epoxide ring opening in aspartate proteases follows a two-step process involving water. In this work, we attempt to unravel the electronic basis of the co-catalytic role of water in the epoxide ring opening reaction by employing high-level quantum mechanical calculations at M06-2X/6-31+G(d,p) level of accuracy. Our computed electron density and its reduced gradient show that water anchor the reactant molecules through strong H-bond bridges. In addition, the strong ionizing power of water allows better charge delocalization to stabilize the transition states and oxyanion intermediate. Electrostatic analyses suggest greater charge transfer from the aspartates to the epoxide in the transition state, which is found to be exergonic in nature rendering a low-barrier reaction compared to a control system where water was omitted in the reaction field. This elucidated mechanism at electronic level could promote further research to search for the co-catalytic role of water in other enzymes.


Subject(s)
Epoxy Compounds , Water , Catalysis , Hydrogen Bonding , Models, Molecular , Quantum Theory
14.
J Mol Graph Model ; 103: 107826, 2021 03.
Article in English | MEDLINE | ID: mdl-33418466

ABSTRACT

HIV-1 protease is an essential enzyme in the life cycle of human immunodeficiency virus (HIV) and hence is one of the most important targets for antiviral drug design. Although there are ten FDA approved drugs against HIV protease (PR), their long term usage elicits mutations leading to drug resistance. As a result, novel therapeutic approaches are being explored including synthetic antibodies. Recently, a murine monoclonal antibody, mAB1696 (mAB) was reported to inhibit PR by preventing dimerization. Crystallographic data could reveal only six protease residues that interact with mAB. The present study employs a range of computational techniques, starting from protein-protein docking to all-atomic molecular dynamics simulations to generate plausible 3D structures of PR-mAB complex. Results show that mAB interacts very strongly with several PR dimer interface residues, such as Gln7, Arg8 (N-terminal), Cys95, Leu97 (C-terminal), Thr26, Gly27 (active site), Gly49, Ile50 (flap), apart from its interactions with the PR epitope region, Pro1-Trp6 (N-terminal). These observations support the hypothesis that binding of mAB prevents the dimerization of PR. The interactions and binding conformations identified in this study could form the basis for designing allosteric inhibitors preventing the dimerization of HIV-1 Protease.


Subject(s)
HIV Protease Inhibitors , HIV-1 , Animals , Antibodies, Monoclonal , HIV Protease , Humans , Mice , Peptide Hydrolases
15.
Langmuir ; 36(50): 15362-15372, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33305946

ABSTRACT

Discrete water domains in hydrophobic environment find relevance in aerosols, oil refinery, the human body, etc. The interfacial microstructure plays a crucial role in the stability of such water domains. Over the decades, the amphiphile-induced electrostatic interaction is considered to be the major stabilizing factor operating at these interfaces. Here we take the representative water/AOT/oil microemulsion to show that creating a strong H-bonding network through suitable additive, such as protic ionic liquid (IL) at the interface, helps both the growth and stability of water domains in the hydrophobic phase. On the other hand, common electrolytes and aprotic ILs fail to replicate such behavior as seen by Raman, Fourier transform infrared spectroscopy, dynamic light scattering (DLS), and electron microscopy measurements. Experimental results are further supported by the all-atomic molecular dynamics (MD) simulations that showed extended H-bonding mediated by the protic IL cations that were localized at the interface. High temperature DLS and rheology studies have shown greater thermal stability and mechanical strengths of our biocompatible microemulsions, which have potential to become suitable templates for in situ synthesis of nanoparticle and various organic compounds.

16.
J Phys Chem B ; 124(49): 11055-11066, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33238706

ABSTRACT

G-quadruplexes (GQs) are highly stable noncanonical forms of nucleic acids that are present in important genomic regions. The central core of the GQ is lined up by four closely spaced carbonyl groups from the G-quartets, and the resulting electrostatic repulsion is neutralized by the coordinating cations. In spite of several reports on GQ structure and cation-GQ interactions, the atomic- to molecular-level understanding of the ion dynamics and ion exchange in the GQ core is quite poor. Here, we attempt to elucidate the mechanism of Na+ and K+ binding to the GQ core and trace the exchange of these ions with the ions in bulk by means of all-atomic molecular dynamics (MD) simulations. One of the most studied GQs, Oxytricha nova telomeric G-quadruplex (OxyGQ), is taken as the representative GQ. Subsequently, umbrella sampling MD simulations were performed to elucidate the energetics of ion translocation from one end to the other end of the GQ central core. Our study highlights the importance of ion hydration for the uptake and correct positioning of the cations in the core. The free-energy landscape of ion transport has shown favorable in-plane binding of Na+ ions with GQ quartets, which matches very well with the crystal structure. The binding of K+ ions, on the other hand, was out-of-plane and its translocation required a larger barrier to cross.


Subject(s)
G-Quadruplexes , Oxytricha , DNA , Nucleic Acid Conformation , Oxytricha/genetics , Potassium , Sodium
17.
Biochemistry ; 59(36): 3316-3331, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32822154

ABSTRACT

HIV-1 protease (HIVPR) is an important drug target for combating AIDS. This enzyme is an aspartyl protease that is functionally active in its dimeric form. Nuclear magnetic resonance reports have convincingly shown that a pseudosymmetry exists at the HIVPR active site, where only one of the two aspartates remains protonated over the pH range of 2.5-7.0. To date, all HIVPR-targeted drug design strategies focused on maximizing the size-shape complementarity and van der Waals interactions of the small molecule drugs with the deprotonated, symmetric active site envelope of crystallized HIVPR. However, these strategies were ineffective with the emergence of drug resistant protease variants, primarily due to the steric clashes at the active site. In this study, we traced a specificity in the substrate binding motif that emerges primarily from the asymmetrical electrostatic potential present in the protease active site due to the uneven protonation. Our detailed results from atomistic molecular dynamics simulations show that while such a specific mode of substrate binding involves significant electrostatic interactions, none of the existing drugs or inhibitors could utilize this electrostatic hot spot. As the electrostatic is long-range interaction, it can provide sufficient binding strength without the necessity of increasing the bulkiness of the inhibitors. We propose that introducing the electrostatic component along with optimal fitting at the binding pocket could pave the way for promising designs that might be more effective against both wild type and HIVPR resistant variants.


Subject(s)
HIV Protease/metabolism , Molecular Dynamics Simulation , Mutation , Oligopeptides/metabolism , Pharmaceutical Preparations/metabolism , Static Electricity , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Amino Acid Sequence , Apoptosis , Binding Sites , Catalytic Domain , Cytochromes c/metabolism , Drug Design , HIV Protease/chemistry , HIV Protease/genetics , Humans , Mitochondria/metabolism , Oligopeptides/chemistry , Pharmaceutical Preparations/chemistry , Sequence Homology , Thermodynamics
18.
Sci Rep ; 10(1): 8411, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439929

ABSTRACT

Rapid spread of ZIKA virus (ZIKV) and its association with severe birth defects have raised worldwide concern. Recent studies have shown that ZIKV retains its infectivity and remains structurally stable at temperatures up to 40 °C, unlike dengue and other flaviviruses. In spite of recent cryo-EM structures that showed similar architecture of ZIKA and dengue virus (DENV) E protein shells, little is known that makes ZIKV so temperature insensitive. Here, we attempt to unravel the molecular basis of greater thermal stability of ZIKV over DENV2 by executing atomistic molecular dynamics (MD) simulations on the viral E protein shells at 37 °C. Our results suggest that ZIKA E protein shell retains its structural integrity through stronger inter-raft communications facilitated by a series of electrostatic and H-bonding interactions among multiple inter-raft residues. In comparison, the DENV2 E protein shell surface was loosly packed that exhibited holes at all 3-fold vertices, in close agreement with another EM structure solved at 37 °C. The residue-level information obtained from our study could pave way for designing small molecule inhibitors and specific antibodies to inhibit ZIKV E protein assembly and membrane fusion.


Subject(s)
Dengue Virus/physiology , Hot Temperature , Viral Envelope Proteins/metabolism , Zika Virus/physiology , Computational Biology , Dengue/therapy , Dengue/transmission , Heat-Shock Response/physiology , Humans , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Protein Structure, Tertiary , Static Electricity , Zika Virus Infection/therapy , Zika Virus Infection/transmission
19.
Planta Med ; 85(17): 1316-1325, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31618777

ABSTRACT

Alzheimer's disease is a neurodegenerative disease that leads to irreversible neuronal damage. Senile plaques, composed of amyloid beta peptide, is the principal abnormal characteristic of the disease. Among the factors involved, the secretase enzymes, namely, α secretase, beta-site amyloid precursor protein-cleaving enzyme, ß secretase, and γ secretase, hold consequential importance. Beta-site amyloid precursor protein-cleaving enzyme 1 is considered to be the rate-limiting factor in the production of amyloid beta peptide. Research supporting the concept of inhibition of beta-site amyloid precursor protein-cleaving enzyme activity as one of the effective therapeutic targets in the mitigation of Alzheimer's disease is well accepted. The identification of natural compounds, such as ß-amyloid precursor protein-selective beta-site amyloid precursor protein-cleaving enzyme inhibitors, and the idea of compartmentalisation of the beta-site amyloid precursor protein-cleaving enzyme 1 action have caused a dire need to closely examine the natural compounds and their effectiveness in the disease mitigation. Many natural compounds have been reported to effectively modulate beta-site amyloid precursor protein-cleaving enzyme 1. At lower doses, compounds like 2,2',4'-trihydroxychalcone acid, quercetin, and myricetin have been shown to effectively reduce beta-site amyloid precursor protein-cleaving enzyme 1 activity. The currently used five drugs that are marketed and used for the management of Alzheimer's disease have an increased risk of toxicity and restricted therapeutic efficiency, hence, the search for new anti-Alzheimer's disease drugs is of primary concern. A variety of natural compounds having pure pharmacological moieties showing multitargeting activity and others exhibiting specific beta-site amyloid precursor protein-cleaving enzyme 1 inhibition as discussed below have superior biosafety. Many of these compounds, which are isolated from medicinal herbs and marine flora, have been long used for the treatment of various ailments since ancient times in the Chinese and Ayurvedic medical systems. The aim of this article is to review the available data on the selected natural compounds, giving emphasis to the inhibition of beta-site amyloid precursor protein-cleaving enzyme 1 activity as a mode of Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Biological Products/therapeutic use , Alkaloids/therapeutic use , Flavonoids/therapeutic use , Humans , Phenols/therapeutic use , Phytotherapy
20.
J Phys Chem B ; 123(38): 7955-7964, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31468966

ABSTRACT

Aspartate proteases are potential targets for various diseases, and many of their inhibitors are FDA-approved drugs. However, these peptidomimetic and reversibly bound drugs become ineffective upon prolonged use. Attempts have been made to design and synthesize various nonpeptidic epoxide-based irreversible inhibitors to combat the drug-resistance enigma. Here, we study the mechanism of epoxide ring opening in two widely studied aspartate proteases, HIV-1 protease and pepsin. Our results from QM/MM molecular dynamics show that the epoxide ring opening in aspartate proteases follow a two-step mechanism with the formation of an oxyanion intermediate, stabilized by a set of water molecules in the protein active site. These water molecules by virtue of "low-barrier hydrogen bonds" with the epoxide ring reduce the intrinsic reaction barrier while remaining structurally unperturbed, thus playing a cocatalytic role. We validated our results by reproducing the experimentally observed protease/pepsin-epoxide covalent complexes as end products. The observed stability of our oxyanion intermediate in a four-water-coordinated state is also consistent with the reported stable state of the hydroxide ion in water as OH-(H2O)4. Our study could pave the way for the design of new class "HIV protease irreversible inhibitors" from the acquired knowledge of the structures of intermediate and transition states traced during the explored reaction mechanism.


Subject(s)
Epoxy Compounds/chemistry , HIV Protease/chemistry , Molecular Dynamics Simulation , Pepsin A/chemistry , Quantum Theory , Water/chemistry , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Catalysis , Epoxy Compounds/metabolism , HIV Protease/metabolism , Humans , Pepsin A/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL