Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(8): 10344-10352, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35170946

ABSTRACT

The electrochemical CO2 reduction into formate acid over Pd-based catalysts under a wide potential window is a challenging task; CO poisoning commonly occurring on the vulnerable surface of Pd must be overcome. Herein, we designed a two-dimensional (2D) AuNP-in-PdNS electrocatalyst, in which the Au nanoparticles are intercalated in Pd nanosheets, for formate production under a wide potential window from -0.1 to -0.7 V versus a reversible hydrogen electrode. Based on the X-ray absorption spectra (XAS) characterizations, CO accumulation detection, and CO stripping voltammetry measurements, we observed that the intercalated Au nanoparticles could effectively avoid the CO formation and boost the formate production on the Pd nanosheet surface by regulating its electronic structure.

2.
ACS Appl Mater Interfaces ; 13(11): 13392-13399, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33719413

ABSTRACT

As a promising candidate in various fields, including energy conversion and electronics, layered van der Waals metal phosphorus trichalcogenides (MPX3) have been widely explored. In addition to the layered structures, MPX3 comprising post-transition metals (i.e., Sn and Pb) are known to form a unique 3D framework with nonlayered structure. However, the nonlayered two-dimensional (2D) crystals of this family have remained unexplored until now. Herein, we successfully synthesized 2D nonlayered tin thiohypodiphosphate (Sn2P2S6) nanosheets, having an indirect bandgap of 2.25 eV and a thickness down to ∼10 nm. The as-obtained nanosheets demonstrate promising photocatalytic water splitting activity to generate H2 in pure water under simulated solar light (AM 1.5G). Moreover, the ultrathin Sn2P2S6 catalyst shows auspicious performance and stability with a continuous operation of 40 h. This work is not only an expansion of the MPX3 family, but it is also a major milestone in the search for new materials for future energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL