Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(48): 44199-44206, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506163

ABSTRACT

The metastable wurtzite crystal phase in gallium phosphide (WZ GaP) is a relatively new structure with little available information about its emission properties compared to the most stable zinc-blend phase. Here, the effect of growth conditions of WZ GaP nano- and microstructures obtained via chemical beam epitaxy on the optical properties was studied using power- and temperature-dependent photoluminescence (PL). We showed that the PL spectra are dominated by two strong broad emission bands at 1.68 and 1.88 eV and two relatively narrow peaks at 2.04 and 2.09 eV. The broad emissions are associated with the presence of carbon and a small number of extended crystal defects, respectively. For the sharp emissions, two main radiative recombination channels were observed with ionization energies estimated in the range of 50-80 meV and lower than 10 meV. No variation of the low-temperature PL spectra was observed for samples grown at different P precursor flows, while increasing Ga content enhanced the dominant broad emission at around 1.68 eV, suggesting that the group III organometallic precursor is the main source of impurities. Finally, Be-doped samples were grown, and their characteristic optical emission at 2.03 eV was identified. These results contribute to the understanding of impurity-related luminescence in hexagonal GaP, being useful for further crystal growth optimization required for the fabrication of optoelectronic devices.

2.
Nanotechnology ; 31(35): 355706, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32434178

ABSTRACT

Nanoconfinement is one of the most intriguing nanoscale effects and affects several physical and chemical properties of molecules and materials, including viscosity, reaction kinetics, and glass transition temperature. In this work, liquid nuclear magnetic resonance (NMR) was used to analyze the behavior of 2,4-pentadienone in ordered mesoporous materials with a pore diameter of between 3 and 10 nm. The liquid NMR results showed meaningful changes in the hydrogen chemical shift and the keto-enol chemical equilibrium, which were associated with the pore diameter, allowing the authors to observe the effects of nanoconfinement. An interesting phenomenon was observed where the chemical equilibria of 2,4-pentadienone confined in a mesoporous material with a pore diameter of 3.5 nm was similar to that obtained with free (bulk) 2,4-pentadienone in larger pore materials. Another interesting result was observed for the enthalpy and entropy of the tautomeric equilibria of 2,4-pentadienone confined in mesoporous materials with a 5.5 nm pore diameter being -7.9 kJ mol-1 and -15.9 J mol-1.K. These values are similar to those obtained by dimethyl sulfoxide. This phenomenon indicates the possible use of ordered mesoporous materials as a reaction substitute in organic solvents. It was further observed that while the values of enthalpy (ΔH) and entropy (ΔS) had been modified by confinement, the Gibbs free energy (ΔG) value remained closer to that observed in free (bulk) 2,4-pentadienone. It is expected that this study will help in understanding the effects of nanoconfinement and provide a simple method to employ NMR techniques to analyze these phenomena.

3.
Sci Rep ; 9(1): 11629, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31406211

ABSTRACT

Non-planar Fin Field Effect Transistors (FinFET) are already present in modern devices. The evolution from the well-established 2D planar technology to the design of 3D nanostructures rose new fabrication processes, but a technique capable of full characterization, particularly their dopant distribution, in a representative (high statistics) way is still lacking. Here we propose a methodology based on Medium Energy Ion Scattering (MEIS) to address this query, allowing structural and compositional quantification of advanced 3D FinFET devices with nanometer spatial resolution. When ions are backscattered, their energy losses unfold the chemistry of the different 3D compounds present in the structure. The FinFET periodicity generates oscillatory features as a function of backscattered ion energy and, in fact, these features allow a complete description of the device dimensions. Additionally, each measurement is performed over more than thousand structures, being highly representative in a statistical meaning. Finally, independent measurements using electron microscopy corroborate the proposed methodology.

SELECTION OF CITATIONS
SEARCH DETAIL