Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542720

ABSTRACT

The purpose of this work was to examine the effects of potassium poly-γ-glutamate (PGA-K) on mice fed a high-fat diet consisting of 60% of total calories for 12 weeks. PGA-K administration reduced the increase in body weight, epididymal fat, and liver weight caused by a high-fat diet compared to the obese group. The triglyceride, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels, which are blood lipid indicators, were significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. The administration of PGA-K resulted in a significant inhibition of pro-inflammatory cytokines, including tumor necrosis factor α and interleukin 6. Moreover, the levels of leptin and insulin, which are insulin resistance indicators, significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. These results suggest that PGA-K exhibits a protective effect against obesity induced by a high-fat diet, underscoring its potential as a candidate for obesity treatment.


Subject(s)
Bacillus subtilis , Diet, High-Fat , Isoflavones , Soybean Proteins , Mice , Animals , Diet, High-Fat/adverse effects , Mice, Obese , Obesity/drug therapy , Obesity/etiology , Cholesterol , Glutamates , Mice, Inbred C57BL
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511425

ABSTRACT

Cervi cornu extracts have been used in traditional medicine for the treatment of various disorders, including osteoporosis. However, since it is not easy to separate the active ingredients, limited research has been conducted on their functional properties. In this study, we extracted the low-molecular-weight (843 Da) collagen NP-2007 from cervi cornu by enzyme hydrolyzation to enhance absorption and evaluated the therapeutic effect in monosodium iodoacetate-induced rat osteoarthritis (OA) model. NP-2007 was orally administered at 50, 100, and 200 mg/kg for 21 days. We showed that the production of matrix metalloproteinase-2, -3, and -9, decreased after NP-2007 treatment. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and prostaglandin E2 were also reduced after treatment of NP-2007. Furthermore, the administration of NP-2007 resulted in effective preservation of both the synovial membrane and knee cartilage and significantly decreased the transformation of fibrous tissue. We verified that the treatment of NP-2007 significantly reduced the production of nitric oxide and pro-inflammatory cytokines including TNF-α, IL-1ß, and IL-6 in lipopolysaccharides-stimulated RAW 264.7 cells by regulation of the NF-kB and MAPK signaling pathways. This study indicates that NP-2007 can alleviate symptoms of osteoarthritis and can be applied as a novel treatment for OA treatment.


Subject(s)
Cornus , Osteoarthritis , Rats , Animals , Matrix Metalloproteinase 2 , Interleukin-6/pharmacology , Osteoarthritis/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Collagen/pharmacology , Chondrocytes/metabolism
3.
Nutrients ; 15(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447355

ABSTRACT

The purpose of this study was to investigate the effect that Glycine max hydrolyzed with enzymes from Bacillus velezensis KMU01 has on dextran-sulfate-sodium (DSS)-induced colitis in mice. Hydrolysis improves functional health through the bioconversion of raw materials and increase in intestinal absorption rate and antioxidants. Therefore, G. max was hydrolyzed in this study using a food-derived microorganism, and its anti-inflammatory effect was observed. Enzymatically hydrolyzed G. max (EHG) was orally administered once daily for four weeks before DSS treatment. Colitis was induced in mice through the consumption of 5% (w/v) DSS in drinking water for eight days. The results showed that EHG treatment significantly alleviated DSS-induced body weight loss and decreased the disease activity index and colon length. In addition, EHG markedly reduced tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 production, and increased that of IL-10. EHG improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice. Moreover, we found that the abundance of 15 microorganisms changed significantly; that of Proteobacteria and Escherichia coli, which are upregulated in patients with Crohn's disease and ulcerative colitis, decreased after EHG treatment. These results suggest that EHG has a protective effect against DSS-induced colitis and is a potential candidate for colitis treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Glycine max , Dextrans/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon , Anti-Inflammatory Agents/therapeutic use , Sulfates , Sodium/adverse effects , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL
4.
J Microbiol Biotechnol ; 18(8): 1368-76, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18756096

ABSTRACT

In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing H-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.


Subject(s)
Apoferritins/biosynthesis , Iron/metabolism , Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Apoferritins/genetics , Chromatography, Liquid , DNA, Fungal/chemistry , DNA, Fungal/genetics , Electrophoresis, Gel, Two-Dimensional , Humans , Iron Deficiencies , Molecular Sequence Data , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Tandem Mass Spectrometry
5.
J Biochem Mol Biol ; 40(1): 82-7, 2007 Jan 31.
Article in English | MEDLINE | ID: mdl-17244486

ABSTRACT

Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.


Subject(s)
Apoferritins/metabolism , Iron/metabolism , Saccharomyces cerevisiae/metabolism , Cell Proliferation , Gene Expression , Humans , Oxidative Stress , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...