Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Eur J Heart Fail ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741283

ABSTRACT

AIMS: We examined the effectiveness of a novel cardiopulmonary management wearable sensor (worn for less than 5 mins) at measuring congestion and correlated the device findings with established clinical measures of congestion. METHODS AND RESULTS: We enrolled three cohorts of patients: (1) patients with heart failure (HF) receiving intravenous diuretics in hospital; (2) patients established on haemodialysis, and (3) HF patients undergoing right heart catheterization (RHC). The primary outcomes in the respective cohorts were a Spearman correlation between (1) change in weight and change in thoracic impedance (TI) (from enrolment, 24 h after admission to discharge) in patients hospitalized for HF; (2) lung ultrasound B-lines and volume removed during dialysis with device measured TI, and (3) pulmonary capillary wedge pressure (PCWP) and sub-acoustic diastolic, third heart sound (S3) in the patients undergoing RHC. A total of 66 patients were enrolled. In HF patients (n = 25), change in weight was correlated with both change in device TI (Spearman correlation [rsp] = -0.64, p = 0.002) and change in device S3 (rsp = -0.53, p = 0.014). In the haemodialysis cohort (n = 21), B-lines and TI were strongly correlated before (rsp = -0.71, p < 0.001) and after (rsp = -0.77, p < 0.001) dialysis. Volume of fluid removed by dialysis was correlated with change in device TI (rsp = 0.49, p = 0.024). In the RHC cohort (n = 20), PCWP measured at one time point and device S3 were not significantly correlated (rsp = 0.230, p = 0.204). There were no device-related adverse events. CONCLUSIONS: A non-invasive device was able to detect changes in congestion in patients with HF receiving decongestion therapy and patients having fluid removed at haemodialysis. The cardiopulmonary management device, which measures multiple parameters, is a potentially useful tool to monitor patients with HF to prevent hospitalizations.

2.
Mol Genet Metab ; 140(4): 107709, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922836

ABSTRACT

Intravenous idursulfase is standard treatment for mucopolysaccharidosis II (MPS II) in Japan. In the interim analysis of this open-label, phase 1/2 study (Center for Clinical Trials, Japan Medical Association: JMA-IIA00350), intracerebroventricular (ICV) idursulfase beta was well tolerated, suppressed cerebrospinal fluid (CSF) heparan sulfate (HS) levels, and stabilized developmental decline over 100 weeks in Japanese children with MPS II. Here, we report the final study results, representing 5 years of ICV idursulfase beta treatment. Six male patients with MPS II and developmental delay were enrolled starting in June 2016 and followed until March 2021. Patients received up to 30 mg ICV idursulfase beta every 4 weeks. Outcomes included CSF HS levels, developmental age (DA) (assessed by the Kyoto Scale of Psychological Development), and safety (adverse events). Monitoring by laboratory biochemistry tests, urinary uronic tests, immunogenicity tests, and head computed tomography or magnetic resonance imaging were also conducted regularly. Following ICV idursulfase beta administration, mean CSF HS concentrations decreased from 7.75 µg/mL at baseline to 2.15 µg/mL at final injection (72.3% reduction). Mean DA increased from 23.2 months at screening to 36.0 months at final observation. In five patients with null mutations, mean DA at the final observation was higher than or did not regress compared with that of historical controls receiving intravenous idursulfase only, and the change in DA was greater in patients who started administration aged ≤3 years than in those aged >3 years (+28.7 vs -6.5 months). The difference in DA change versus historical controls in individual patients was +39.5, +40.8, +17.8, +10.5, +7.6 and - 4.5 (mean + 18.6). Common ICV idursulfase beta-related adverse events were vomiting, pyrexia, gastroenteritis, and upper respiratory tract infection (most mild/moderate). These results suggest that long-term ICV idursulfase beta treatment improved neurological symptoms in Japanese children with neuronopathic MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Child , Humans , Male , Mucopolysaccharidosis II/pathology , Japan , Enzyme Replacement Therapy/methods , Administration, Intravenous , Research
3.
ACS Synth Biol ; 12(5): 1474-1486, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37071041

ABSTRACT

Although recent advances in deep learning approaches for protein engineering have enabled quick prediction of hot spot residues improving protein solubility, the predictions do not always correspond to an actual increase in solubility under experimental conditions. Therefore, developing methods that rapidly confirm the linkage between computational predictions and empirical results is essential to the success of improving protein solubility of target proteins. Here, we present a simple hybrid approach to computationally predict hot spots possibly improving protein solubility by sequence-based analysis and empirically explore valuable mutants using split GFP as a reporter system. Our approach, Consensus design Soluble Mutant Screening (ConsenSing), utilizes consensus sequence prediction to find hot spots for improvement of protein solubility and constructs a mutant library using Darwin assembly to cover all possible mutations in one pot but still keeps the library as compact as possible. This approach allowed us to identify multiple mutants of Escherichia coli lysine decarboxylase, LdcC, with substantial increases in soluble expression. Further investigation led us to pinpoint a single critical residue for the soluble expression of LdcC and unveiled its mechanism for such improvement. Our approach demonstrated that following a protein's natural evolutionary path provides insights to improve protein solubility and/or increase protein expression by a single residue mutation, which can significantly change the profile of protein solubility.


Subject(s)
Carboxy-Lyases , Green Fluorescent Proteins/metabolism , Carboxy-Lyases/genetics , Protein Engineering/methods , Gene Library
4.
Metabolites ; 12(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35323662

ABSTRACT

Carbofuran is one of the most commonly used N-methylcarbamate-based pesticides and is excellent for controlling pests; however, carbofuran also causes soil and water pollution. Although various studies have been conducted on the bioremediation of pesticide-contaminated soil, the changes occurring in the metabolome during the bioremediation of carbofuran are not fully understood. In this study, the intracellular and extracellular metabolites of the Chryseobacterium sp. BSC2-3 strain were analysed during carbofuran degradation by using a liquid chromatography-mass spectrometry-based metabolomics approach. We found that the BSC2-3 strain extracellularly transformed carbofuran into 3-hydroxycarbofuran. Intracellular metabolite analysis revealed that carbofuran mainly affected aminobenzoate degradation, ubiquinone and terpenoid-quinone biosynthesis, and arginine and proline metabolism. Carbofuran especially affected the metabolic pathway for the degradation of naphthalene and aminobenzoate. Metabolomics additionally revealed that the strain produces disease resistance inducers and plant growth regulators. We also identified the genes involved in the production of indole-3-acetic acid, which is one of the most active auxins. Overall, we identified the metabolic changes induced in carbofuran-degrading bacteria and the genes predicted to be responsible for the degradation of carbofuran.

5.
Mol Ther Methods Clin Dev ; 21: 67-75, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33768130

ABSTRACT

This open-label, phase 1/2 study (JMACCT CTR JMA-IIA00350) evaluated the efficacy and safety of intracerebroventricular idursulfase beta in patients with mucopolysaccharidosis II (MPS II). Herein, we report the 100-week results. Six patients with severe MPS II aged 23-65 months were enrolled. Idursulfase beta (increasing from 1 to 30 mg between weeks 0 and 24, followed by a 30-mg final dose) was administered intracerebroventricularly once every 4 weeks using an implanted cerebrospinal fluid (CSF) reservoir; intravenous administration of idursulfase was also continued throughout the study. Efficacy endpoints included developmental age by the Kyoto Scale of Psychological Development 2001 and heparan sulfate (HS) concentration in CSF (primary outcome). In all six patients, HS concentrations decreased (40%-80%) from baseline to week 100. For overall developmental age, the difference in change from baseline to week 100 in each patient compared with patients treated by intravenous idursulfase administration (n = 13) was +8.0, +14.5, +4.5, +3.7, +8.2, and -8.3 months (mean, +5.1 months). Idursulfase beta was well tolerated. The most common adverse events were pyrexia, upper respiratory tract infection, and vomiting. The results suggest that intracerebroventricular idursulfase beta is well tolerated and can be effective at preventing and stabilizing developmental decline in patients with neuronopathic MPS II.

6.
Rev Sci Instrum ; 92(12): 123903, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972459

ABSTRACT

In this work, we describe the design and development of an in situ neutron reflectometry cell for high temperature investigations of structural changes occurring at the interface between inorganic salts, in their molten state up to 800 °C, and corrosion resistant alloys or other surfaces. In the cell, a molten salt is confined by an annular ring of single crystal sapphire constrained between the sample substrate and a sapphire plate using two gold O-rings, enclosing a liquid salt volume of 20 ml, along with a dynamic cell volume to accommodate expansion of the liquid with heating. As a test case for the cell, we report on an in situ neutron reflectometry measurement of the interface between a eutectic salt mixture of MgCl2-KCl (32:68 molar ratio) and a single crystal sapphire substrate at 450 °C, resulting in the formation of a 60 Å layer having a scattering length density of 1.72 × 10-6 Å-2. While the origin of this layer is uncertain, it is likely to have resulted from the salt reacting with an existing impurity layer on the sapphire substrate.

7.
IEEE J Biomed Health Inform ; 25(1): 163-174, 2021 01.
Article in English | MEDLINE | ID: mdl-32750903

ABSTRACT

This work details the non-invasive evaluation of a carotid arterial blood pressure (ABP) waveform during the Valsalva maneuver. Unfocused and wide acoustic beams are insonated on the carotid artery to achieve motion-tolerant measurements with a simple two-element ultrasound scanner. Arterial flow and distension waveforms are reliably estimated from spectral Doppler and M-mode ultrasound images whose qualities are consistently maintained in different phases of the maneuver despite possible displacements of the artery. A local pulse wave velocity is estimated using a flow-area method, and it is then combined with the distension waveform to produce the ABP waveform. Human subject validation on seven healthy subjects shows that the bias in pulse pressure estimates across subjects is 0.47 ± 13.1 mmHg. The average root mean square deviations of the ultrasonically measured waveform across subjects is 10.1 ± 2.43 mmHg, excluding the strain phase of the Valsalva maneuver, and 17.7 ± 6.30 mmHg in all phases. The mean correlation coefficient between the ultrasonically measured and reference waveform is calculated to be 0.92 ± 0.04 across subjects. Detailed morphological features and their changes across different phases are observed as reported. This uninterrupted central ABP waveform monitoring under hemodynamics changes supports the idea of a novel stress test to evaluate the health and dynamics of the cardiovascular system at a spot check in clinical settings.


Subject(s)
Arterial Pressure , Pulse Wave Analysis , Blood Pressure , Blood Pressure Determination , Carotid Arteries/diagnostic imaging , Humans , Valsalva Maneuver
8.
Mol Genet Metab Rep ; 24: 100630, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32775211

ABSTRACT

The natural history of cognitive growth in the neuronopathic form of Mucopolysaccharidosis type II (MPS II) is not well defined especially their patterns of development and decline. The ability to predict the developmental course of the neurologically impaired patient is necessary to assess treatment outcomes aimed at the brain. Thirteen intravenous enzyme replacement therapy-treated Japanese patients with neuronopathic MPSII who had mutation analysis were followed on one standard measure of cognitive development over time. Six children in Group MS had missense mutations and 7 children in Group NT had null type mutations such as deletions, recombination with the pseudogene, and nonsense mutations. The patients as a whole demonstrated cognitive growth until about 36-42 months of age, followed by a plateau in development. The mean age equivalent score at age 3 was similar to that at age 6. While the decline was slow for the entire group, the patients in Group NT showed a more rapid decline than those in Group MS. Two patients with deletions showed decline to a very low level by age 5. The long plateau in cognitive development in patents with MPS II was substantiated and was consistent with other studies. This is the first demonstration that different mutation types within the neuronopathic MPS II patients are associated with different rates of decline. We also were able to identify the chronological age before which a trial would need to start in order to maintain cognitive growth and a ceiling beyond which a relatively normal outcome would not be likely.

9.
Biotechnol Bioeng ; 116(12): 3324-3332, 2019 12.
Article in English | MEDLINE | ID: mdl-31478191

ABSTRACT

3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2'-fucosyllactose (2'-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2'-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2'-FL, and lower digestibility of 3-FL than 2'-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km . We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L-fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D-lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L-1 ·hr-1 and the specific 3-FL yield of 0.5 g/g dry cell weight.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Guanosine Triphosphate , Metabolic Engineering , Milk, Human/chemistry , Oligosaccharides , beta-Galactosidase , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Guanosine Diphosphate Fucose/genetics , Guanosine Diphosphate Fucose/metabolism , Guanosine Triphosphate/biosynthesis , Guanosine Triphosphate/genetics , Humans , Oligosaccharides/biosynthesis , Oligosaccharides/chemistry , Oligosaccharides/genetics , Trisaccharides/genetics , Trisaccharides/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
11.
Biotechnol Bioeng ; 116(2): 250-259, 2019 02.
Article in English | MEDLINE | ID: mdl-30414290

ABSTRACT

A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid identification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2 ) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.


Subject(s)
Computational Biology/methods , Genetic Testing/methods , Hot Temperature , Mutant Proteins/chemistry , Protein Stability , Mutant Proteins/genetics , Time Factors
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3817-3820, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441197

ABSTRACT

This work presents non-invasive evaluation of the arterial blood pressure (ABP) waveform during the Valsalva maneuver. Ultrasound scanning is conducted to acquire blood flow and arterial distension signals. Motion-tolerant ultrasound measurement schemes are employed by using two wide rectangular transducers. Pulse pressure (PP) estimated at the common carotid artery is compared to that of a finger waveform measured by a volume clamping device. The changes of PP are correlated between the two measurements. A more depressed dicrotic notch during the Valsalva strain is observed, and beat-to-beat variations of PP and a pulse rate caused by respiration and baroreflex is observed during the control. This validation suggests novel opportunities to investigate the pathophysiology of cardiovascular diseases through the noninvasive ABP waveform monitoring during the stress test.


Subject(s)
Arterial Pressure , Blood Pressure Determination/instrumentation , Ultrasonography , Valsalva Maneuver , Humans
13.
Sci Rep ; 8(1): 10280, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980730

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) can be used for the biosynthesis of lactones and esters from ketones. However, the BVMO-based biocatalysts are not so stable under process conditions. Thereby, this study focused on enhancing stability of the BVMO-based biocatalysts. The biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid by the recombinant Escherichia coli expressing the BVMO from Pseudomonas putida and an alcohol dehydrogenase from Micrococcus luteus was used as a model system. After thorough investigation of the key factors to influence stability of the BVMO, Cys302 was identified as an engineering target. The substitution of Cys302 to Leu enabled the engineered enzyme (i.e., E6BVMOC302L) to become more stable toward oxidative and thermal stresses. The catalytic activity of E6BVMOC302L-based E. coli biocatalysts was also greater than the E6BVMO-based biocatalysts. Another factor to influence biocatalytic performance of the BVMO-based whole-cell biocatalysts was availability of carbon and energy source during biotransformations. Glucose feeding into the reaction medium led to a marked increase of final product concentrations. Overall, the bioprocess engineering to improve metabolic stability of host cells in addition to the BVMO engineering allowed us to produce (Z)-11-(heptanoyloxy)undec-9-enoic acid to a concentration of 132 mM (41 g/L) from 150 mM ricinoleic acid within 8 h.


Subject(s)
Biocatalysis , Escherichia coli/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Pseudomonas putida/enzymology , Ricinoleic Acids/metabolism , Amino Acid Sequence , Biotransformation , Mixed Function Oxygenases/genetics , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Oxidative Stress , Protein Conformation , Sequence Homology
14.
Article in English | MEDLINE | ID: mdl-29733280

ABSTRACT

This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.


Subject(s)
Blood Pressure Determination/methods , Pulse Wave Analysis/methods , Signal Processing, Computer-Assisted , Ultrasonography, Doppler/methods , Blood Pressure/physiology , Carotid Arteries/diagnostic imaging , Humans , Movement/physiology , Phantoms, Imaging
15.
Enzyme Microb Technol ; 113: 29-36, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29602384

ABSTRACT

A flavonoid comprises polyphenol compounds with pronounced antiviral, antioxidant, anticarcinogenic, and anti-inflammatory effects. The flavonoid modification by methylation provides a greater stability and improved pharmacokinetic properties. The methyltransferase from plants or microorganisms is responsible for such substrate modifications in a regiospecific or a promiscuous manner. GerMIII, originally characterized as a putative methyltransferase in a dihydrochalcomycin biosynthetic gene cluster of the Streptomyces sp. KCTC 0041BP, was tested for the methylation of the substrates of diverse chemical structures. Among the various tested substrates, flavonoids emerged as the favored substrates for methylation. Further, among the flavonoids, quercetin is the most favorable substrate, followed by luteolin, myricetin, quercetin 3-O-ß-D-glucoside, and fisetin, while only a single product was formed in each case. The products were confirmed by HPLC and mass-spectrometry analyses. A detailed NMR spectrometric analysis of the methylated quercetin and luteolin derivatives confirmed the regiospecific methylation at the 4'-OH position. Modeling and molecular docking provided further insight regarding the most favorable mechanism and substrate architecture for the enzymatic catalysis. Accordingly, a double bond between the C2 and the C3 and a single-ring-appended conjugate-hydroxyl group are crucial for the favorable enzymatic conversions of the GerMIII catalysis. Thus, in this study, the enzymatic properties of GerMIII and a mechanistic overview of the regiospecific modification that was implemented for the acceptance of quercetin as the most favorable substrate are presented.


Subject(s)
Flavonoids/metabolism , Methyltransferases/metabolism , Streptomyces/enzymology , Flavonoids/chemistry , Kinetics , Methylation , Methyltransferases/chemistry , Molecular Docking Simulation , Streptomyces/chemistry , Substrate Specificity
16.
Enzyme Microb Technol ; 110: 46-52, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29310855

ABSTRACT

Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space.


Subject(s)
Alanine Transaminase/metabolism , Bacillus/enzymology , Evolution, Molecular , Saccharopolyspora/enzymology , Transaminases/metabolism , Alanine Transaminase/chemistry , Alanine Transaminase/genetics , Amino Acid Sequence , Bacillus/classification , Cloning, Molecular , Databases, Protein , Sequence Analysis, Protein/methods , Sequence Homology , Substrate Specificity , Transaminases/chemistry , Transaminases/genetics
17.
Mol Genet Metab Rep ; 14: 3-9, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29124014

ABSTRACT

Pompe disease is an autosomal recessive disorder caused by acid α-glucosidase (GAA) deficiency, which results in the accumulation of glycogen in lysosomes in multiple tissues, including cardiac, skeletal, and smooth muscle cells. Thus far, 558 sequence variants of the GAA gene have been published in the Pompe Disease Mutation Database, and some mutations appear with considerable frequency in particular ethnic groups, such as Caucasians, Taiwanese, Chinese, and Koreans. However, the GAA mutation pattern in Japanese patients remains poorly understood. We analyzed the relationship between the genetic and clinical features of 38 mostly Japanese patients with Pompe disease from 35 unrelated families. We identified 28 different GAA gene mutations, including 7 novel mutations, by a GAA gene analysis. c.546G > T (22.9%) and c.1857C > G (14.3%) were the most common mutations and accounted for 37.1% of the total mutant alleles. In the six patients with infantile-onset Pompe disease (IOPD), c.1857C > G was also the most common mutation. In addition, there were 13 homozygotes (5 with the c.546G > T) among the 35 families, which is the highest frequency reported thus far. Regarding the initial symptoms, cardiomegaly was the most common (3/6 = 50%) in IOPD patients, while muscle weakness was observed the most frequently in patients with late-onset Pompe disease (LOPD) (15/30 = 50%). Notably, all IOPD patients who showed respiratory distress at the time of onset require respiratory assistance at present (4/4 = 100%). Regarding the presenting symptoms, cardiomegaly (6/6 = 100%) and hepatomegaly (4/6 = 66.7%) were more commonly seen in IOPD, and muscle weakness (24/29 = 82.7%) was observed more frequently in LOPD. Respiratory assistance is required at present in 33.3% of IOPD patients and 50% of LOPD patients, and 20% of IOPD patients and 29.6% of LOPD patients are wheelchair users. These individual clinical courses may be influenced by the timing of the diagnosis and treatment; for example, in 2007, an ERT orphan drug for treatment of Pompe disease, Alglucosidase alfa, was made available in Japan, and there were 5 (5/6 = 83.3%) wheelchair users diagnosed from 2008 to 2009 (cases 32-38) and 4 (4/27 = 14.8%) from 2010 to 2015 (cases 1-31). These findings underscore the importance of the early diagnosis and treatment.

18.
Bioresour Technol ; 251: 288-294, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288957

ABSTRACT

Oils and fatty acids are important renewable resources provided by nature. Therefore, biotransformation of renewable oils and fatty acids into industrially relevant C9 chemicals was investigated in this study. Olive oil, soybean oil, yeast derived oil, and microalgae fatty acid methyl esters were converted into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid by a lipase and a recombinant Escherichia coli expressing oleate hydratase, long chain secondary alcohol dehydrogenase, Baeyer-Villiger monooxygenase, long chain primary alcohol dehydrogenase, and aldehyde dehydrogenase. It was found that n-nonanoic acid and azelaic acid could be produced to a concentration of 4.3 mM from 3 g/L olive oil with a specific product formation rate of 3.1 U/g dry cells. Biotransformation rates were influenced by compositions of fatty acids and purity of the starting material. This study may contribute to the production of industrially relevant C9 chemicals from renewable oils and fatty acids by simultaneous enzyme/whole-cell biotransformation.


Subject(s)
Fatty Acids , Microalgae , Biotransformation , Dicarboxylic Acids , Esters , Plant Oils
19.
Mol Genet Metab ; 118(3): 190-197, 2016 07.
Article in English | MEDLINE | ID: mdl-27246110

ABSTRACT

Mucopolysaccharidosis type II (MPS II: also called as Hunter syndrome) is an X-linked recessive lysosomal storage disorder characterized by the accumulation of extracellular glycosaminoglycans due to the deficiency of the enzyme iduronate-2-sulfatase (IDS). Previous observations suggested that MPS II can be classified into two distinct disease subtypes: (1) severe type of MPS II involves a decline in the cognitive ability of a patient and (2) attenuated type of MPS II exhibits no such intellectual phenotype. To determine whether such disease subtypes of MPS II could be explained by genetic diagnosis, we analyzed mutations in the IDS gene of 65 patients suffering from MPS II among the Japanese population who were diagnosed with both the accumulation of urinary glycosaminoglycans and a decrease in their IDS enzyme activity between 2004 and 2014. Among the specimens examined, we identified the following mutations: 33 missense, 8 nonsense, 7 frameshift, 4 intronic changes affecting splicing, 8 recombinations involving IDS-IDS2, and 7 other mutations including 4 large deletions. Consistent with the previous data, the results of our study showed that most of the attenuated phenotype was derived from the missense mutations of the IDS gene, whereas mutations associated with a large structural alteration including recombination, splicing, frameshift, and nonsense mutations were linked to the severe phenotype of MPS II. Furthermore, we conducted a homology modeling study of IDS P120R and N534I mutant as representatives of the causative mutation of the severe and attenuated type of MPS II, respectively. We found that the substitution of P120R of the IDS enzyme was predicted to deform the α-helix generated by I119-F123, leading to the major structural alteration of the wild-type IDS enzyme. In sharp contrast, the effect of the structural alteration of N534I was marginal; thus, this mutation was pathogenically predicted to be associated with the attenuated type of MPS II. These results suggest that a combination of the genomic diagnosis of the IDS gene and the structural prediction of the IDS enzyme could enable the prediction of a phenotype more effectively.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/genetics , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/pathology , Mutation , Asian People/genetics , Female , Genetic Predisposition to Disease , Glycosaminoglycans/urine , Humans , Japan , Male , Models, Molecular , Pedigree , Protein Structure, Secondary , Structural Homology, Protein
20.
Sci Rep ; 6: 28223, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27311560

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations.


Subject(s)
Bioreactors/microbiology , Biotransformation/genetics , Escherichia coli/genetics , Mixed Function Oxygenases/genetics , Ricinoleic Acids/chemistry , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Mixed Function Oxygenases/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...