Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 24(21): e202300438, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37665230

ABSTRACT

We defined four major deterioration factors (electrolyte loss (EL), lithium loss (LL), lithium precipitation (LP), and compound deterioration (CD)). Then, we derived eleven key performance indicators (KPIs) for comparative analysis. After that, we fabricated three deteriorated cells for each of three deterioration factors (EL, LL, and LP) and one cell with CD (for verification) with four individual (dis)charging experiment manuals. The two major contributions of this study are the performance of 1) trend analysis to determine a suitable diagnostic metric by inspecting the eleven KPIs and 2) comparison analysis of V o c v , t ' ' ${{V}_{ocv,t}^{{ {^\prime} {^\prime}}}}$ and V o c v , t , s i m ' ' ${{V}_{ocv,t,sim}^{{ {^\prime} {^\prime}}}}$ to verify the effectiveness of utilizing V o c v , t ' ' ${{V}_{ocv,t}^{{ {^\prime} {^\prime}}}}$ as a real-time deterioration diagnostic factor using a concept of model-in-the-loop simulation. The results show that 1) V o c v , t ' ' ${{V}_{ocv,t}^{{ {^\prime} {^\prime}}}}$ has the most conspicuous trendline tendency among the eleven comparison targets for all four major deterioration factors, and 2) the angle difference between the two trends of V o c v , t ' ' ${{V}_{ocv,t}^{{ {^\prime} {^\prime}}}}$ and V o c v , t , s i m ' ' ${{V}_{ocv,t,sim}^{{ {^\prime} {^\prime}}}}$ lies within a minimum of 9° and a maximum of 43° (with a 10 4 ${{10}^{4}}$ sscale on the x-axis and a 10 - 7 ${{10}^{-7}}$ scale on the y-axis for a clear trend line analysis). From this, we can conclude that the trendline-based real-time deterioration analysis employing V o c v , t ' ' ${{V}_{ocv,t}^{{ {^\prime} {^\prime}}}}$ may be practically applicable to a limited extent.

2.
Adv Mater ; 35(45): e2303787, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466919

ABSTRACT

5 V-class LiNi0.5 Mn1.5 O4 (LNMO) with its spinel symmetry is a promising cathode material for lithium-ion batteries. However, the high-voltage operation of LNMO renders it vulnerable to interfacial degradation involving electrolyte decomposition, which hinders long-term and high-rate cycling. Herein, this longstanding challenge presented by LNMO is overcome by incorporating a sacrificial binder, namely, λ-carrageenan (CRN), a sulfated polysaccharide. This binder not only uniformly covers the LNMO surface via hydrogen bonding and ion-dipole interaction but also offers an ionically conductive cathode-electrolyte interphase layer containing LiSOx F, a product of the electrochemical decomposition of the sulfate group. Taking advantage of these two auspicious properties, the CRN-based electrode exhibits cycling and rate performance far superior to that of its counterparts based on the conventional poly(vinylidene difluoride) and sodium alginate binders. This study introduces a new concept, namely "sacrificial" binder, for battery electrodes known to deliver superior electrochemical performance but be adversely affected by interfacial instability.

3.
Nat Commun ; 13(1): 5510, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36127321

ABSTRACT

Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo4O7 material. We reveal that the surface of YBaCo4O7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo4O7 composes of corner-sharing only CoO4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER.

4.
Sci Adv ; 5(5): eaaw0536, 2019 May.
Article in English | MEDLINE | ID: mdl-31114803

ABSTRACT

Thermoregulation has substantial implications for energy consumption and human comfort and health. However, cooling technology has remained largely unchanged for more than a century and still relies on cooling the entire space regardless of the number of occupants. Personalized thermoregulation by thermoelectric devices (TEDs) can markedly reduce the cooling volume and meet individual cooling needs but has yet to be realized because of the lack of flexible TEDs with sustainable high cooling performance. Here, we demonstrate a wearable TED that can deliver more than 10°C cooling effect with a high coefficient of performance (COP > 1.5). Our TED is the first to achieve long-term active cooling with high flexibility, due to a novel design of double elastomer layers and high-ZT rigid TE pillars. Thermoregulation based on these devices may enable a shift from centralized cooling toward personalized cooling with the benefits of substantially lower energy consumption and improved human comfort.

5.
Nat Commun ; 9(1): 5100, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504861

ABSTRACT

Sodium transition metal oxides with layered structures are attractive cathode materials for sodium-ion batteries due to their large theoretical specific capacities. However, these layered oxides suffer from poor cyclability and low rate performance because of structural instability and sluggish electrode kinetics. In the present work, we show the sodiation reaction of Mn3O4 to yield crystal water free NaMnO2-y-δ(OH)2y, a monoclinic polymorph of sodium birnessite bearing Na/Mn(OH)8 hexahedra and Na/MnO6 octahedra. With the new polymorph, NaMnO2-y-δ(OH)2y exhibits an enlarged interlayer distance of about 7 Å, which is in favor of fast sodium ion migration and good structural stability. In combination of the favorable nanosheet morphology, NaMn2-y-δ(OH)2y cathode delivers large specific capacity up to 211.9 mAh g-1, excellent cycle performance (94.6% capacity retention after 1000 cycles), and outstanding rate capability (156.0 mAh g-1 at 50 C). This study demonstrates an effective approach in tailoring the structural and electrochemical properties of birnessite towards superior cathode performance in sodium-ion batteries.

6.
Small ; 14(43): e1800938, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29971916

ABSTRACT

This work describes a flexible and stretchable battery pack configuration that exhibits highly stable performance under large deformation up to 100% biaxial stretching. Using stress-enduring printable inks and serpentine interconnects, the new screen-printing route offers an attractive solution for converting rigid battery units into a flexible, stretchable energy storage device. Coin-cell lithium ion batteries are thus assembled onto the island regions of a screen-printed, buckling-enabled, polymer-reinforced interconnect "island-bridge" array. Most of the strain on the new energy-storage device is thus accommodated by the stress-enduring serpentine structures, and the array is further reinforced by mechanically strong "backbone" layers. Battery pack arrays are assembled and tested under different deformation levels, demonstrating a highly stable performance (<2.5% change) under all test conditions. A light emitting diode band powered by the battery pack is tested on-body, showing uninterrupted illumination regardless of any degrees of deformation. Moreover, battery-powered devices that are ultrastable under large deformation can be easily fabricated by incorporating different electronics parts such as sensors or integrated circuits on the same platform. Such ability to apply traditionally rigid, bulky lithium ion batteries onto flexible and stretchable printed surfaces holds considerable promise for diverse wearable applications.

7.
ACS Nano ; 10(4): 4312-21, 2016 04 26.
Article in English | MEDLINE | ID: mdl-26978597

ABSTRACT

This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate's discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.

8.
ChemSusChem ; 7(9): 2609-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25044873

ABSTRACT

Nano-scale Pt particles are often reported to be more electrochemically active and stable in a fuel cell if properly displaced on support materials; however, the factors that affect their activity and stability are not well understood. We applied first-principles calculations and experimental measurements to well-defined model systems of N-doped graphene supports (N-GNS) to reveal the fundamental mechanisms that control the catalytic properties and structural integrity of nano-scale Pt particles. DFT calculations predict thermodynamic and electrochemical interactions between N-GNS and Pt nanoparticles in the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Moreover, the dissolution potentials of the Pt nanoparticles supported on GNS and N-GNS catalysts are calculated under acidic conditions. Our results provide insight into the design of new support materials for enhanced catalytic efficiency and long-term stability.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Models, Molecular , Nitrogen/chemistry , Catalysis , Metal Nanoparticles/chemistry , Methanol/chemistry , Molecular Conformation , Oxidation-Reduction , Oxygen/chemistry , Platinum/chemistry , Quantum Theory
9.
Nanoscale ; 5(18): 8625-33, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23897215

ABSTRACT

Using density functional theory (DFT) calculations, we identify the thermodynamically stable configurations of Pt-Co alloy nanoparticles of varying Co compositions and particle sizes. Our results indicate that the most thermodynamically stable structure is a shell-by-shell configuration where the Pt atom only shell and the Co only shell alternately stack and the outermost shell consists of a Pt skin layer. DFT calculations show that the structure has substantially higher dissolution potential of the outermost Pt shell compared with pure Pt nanoparticles of approximately the same size. Furthermore, our DFT calculations also propose that the shell-by-shell structure shows much better oxygen reduction reaction (ORR) activity than conventional bulk or nanoparticles of pure Pt. These novel catalyst properties can be changed when the surfaces are adsorbed with oxygen atoms via selective segregation followed by the electrochemical dissolution of the alloyed Co atoms. However, these phenomena are thermodynamically not plausible if the chemical potentials of oxygen are controlled below a certain level. Therefore, we propose that the shell-by-shell structures are promising candidates for highly functional catalysts in fuel cell applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...