Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 4(4): 102648, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37865913

ABSTRACT

Environmental nano- and microplastics (NMPs) pose serious environmental issues, yet there is no established technique to assess their impact on health through oral ingestion. Here, we present a protocol to assess the impact of NMPs in the intestinal immune microenvironments by employing chronic exposure to NMPs in a mouse model. We describe steps for administration of NMPs, feces and tissue collection, and colonic gut digestion. We then detail procedures for isolation of intestinal immune cells and RNA isolation. For complete details on the use and execution of this protocol, please refer to Harusato et al.1.


Subject(s)
Microplastics , Plastics , Animals , Mice , Microplastics/toxicity , Colon , Disease Models, Animal , Feces
2.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37193606

ABSTRACT

The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.


Subject(s)
Matrix Attachment Region Binding Proteins , Animals , Mice , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Immunity, Innate , Lymphocytes , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation
3.
iScience ; 26(4): 106474, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37091249

ABSTRACT

Environmental microplastics have emerged as a critical issue in maintaining the planetary ecosystem. In this study, we generated particulate microplastics from polyethylene terephthalate (PM-PET) and investigated their impact in the gut by using mouse models and implementing histological examinations, as well as multi-omics analysis for colonic immune cells and microbiota. As a result, histological approaches showed that chronic and physiological low dose exposure of PM-PET did not affect intestinal pathology and mucin barriers, respectively. Moreover, immunohistochemical analysis demonstrated that the numbers of T cells, B cells, macrophages, and granulocytes were not affected by the exposure to PM-PET. However, RNA-seq analysis revealed that PM-PET had a substantial impact on the transcriptome in gut immune cells and their metabolisms, while 16s rRNA metagenomic analysis showed that the composition of microbiota was modestly affected. These results suggest an unexpected role played by the PM-PET in affecting gut immune homeostasis without detectable inflammation.

4.
Nutrients ; 14(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501013

ABSTRACT

The significant increase in food allergy incidence is correlated with dietary changes in modernized countries. Here, we investigated the impact of dietary emulsifiers on food allergy by employing an experimental murine model. Mice were exposed to drinking water containing 1.0% carboxymethylcellulose (CMC) or Polysorbate-80 (P80) for 12 weeks, a treatment that was previously demonstrated to induce significant alterations in microbiota composition and function leading to chronic intestinal inflammation and metabolic abnormalities. Subsequently, the ovalbumin food allergy model was applied and characterized. As a result, we observed that dietary emulsifiers, especially P80, significantly exacerbated food allergy symptoms, with increased OVA-specific IgE induction and accelerated type 2 cytokine expressions, such as IL-4, IL-5, and IL-13, in the colon. Administration of an antibiotic regimen completely reversed the emulsifier-induced exacerbated susceptibility to food allergy, suggesting a critical role played by the intestinal microbiota in food allergy and type 2 immune responses.


Subject(s)
Food Hypersensitivity , Mice , Animals , Emulsifying Agents/adverse effects , Diet , Ovalbumin , Polysorbates/adverse effects , Inflammation/chemically induced , Colon , Immunity , Mice, Inbred BALB C , Disease Models, Animal
5.
Cells ; 11(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-36231078

ABSTRACT

The Runt-related transcription factor (RUNX) family of proteins are crucial for many developmental and immuno-physiological processes. Their importance in cellular and tissue development has been repeatedly demonstrated as they are often found mutated and implicated in tumorigenesis. Most importantly, RUNX have now emerged as critical regulators of lymphocyte function against pathogenic infections and tumorigenic cells, the latter has now revolutionized our current understandings as to how RUNX proteins contribute to control tumor pathogenicity. These multifunctional roles of RUNX in mammalian immune responses and tissue homeostasis have led us to appreciate their value in controlling anti-tumor immune responses. Here, we summarize and discuss the role of RUNX in regulating the development and function of lymphocytes responding to foreign and tumorigenic threats and highlight their key roles in anti-tumor immunity.


Subject(s)
Core Binding Factor alpha Subunits , Neoplasms , Animals , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Immunity , Lymphocytes/metabolism , Mammals/metabolism , Neoplasms/genetics , Transcription Factors
6.
Exp Mol Med ; 53(2): 202-209, 2021 02.
Article in English | MEDLINE | ID: mdl-33627794

ABSTRACT

Chronic infection with persistent antigenic stimulation results in the generation of exhausted CD8+ T cells, which are considered defective effector CD8+ T cells, and thus compromises effective immune responses. However, recent studies have illustrated that exhausted CD8+ T cells may be purposely generated and maintained to provide mild immune responses against chronic infection or cancer, which can be safer over a long period of time than strong immune responses. Indeed, a specific population of exhausted CD8+ T cells that behaves similarly to self-renewing stem cells and provides a continuous supply of exhausted CD8+ T cells has been identified, indicating that this population can be considered progenitors of exhausted CD8+ T cells. Furthermore, several ground-breaking studies in the last few years have shed new light on the transcriptional regulatory network governing the generation and propagation of exhausted CD8+ T cells, which involves T cell receptor (TCR) signaling that leads to NFAT-TCF1 (nuclear factor of activated T cells-T cell factor 1) activity followed by activation of the TOX/NR4A axis. Elucidation of the intracellular signaling pathways will help to define the definitive developmental stages leading to exhausted CD8+ T cells, which can be exploited to advance our never-ending battle against cancer. This review will summarize the recent discoveries that have deepened our understanding of the exhaustion program of cytotoxic CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Transcription, Genetic , Animals , Biomarkers , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Differentiation/immunology , Humans , Immune Tolerance , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
7.
Nat Commun ; 11(1): 1562, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218434

ABSTRACT

CCL5 is a unique chemokine with distinct stage and cell-type specificities for regulating inflammation, but how these specificities are achieved and how CCL5 modulates immune responses is not well understood. Here we identify two stage-specific enhancers: the proximal enhancer mediates the constitutive CCL5 expression during the steady state, while the distal enhancer located 1.35 Mb from the promoter induces CCL5 expression in activated cells. Both enhancers are antagonized by RUNX/CBFß complexes, and SATB1 further mediates the long-distance interaction of the distal enhancer with the promoter. Deletion of the proximal enhancer decreases CCL5 expression and augments the cytotoxic activity of tissue-resident T and NK cells, which coincides with reduced melanoma metastasis in mouse models. By contrast, increased CCL5 expression resulting from RUNX3 mutation is associated with more tumor metastasis in the lung. Collectively, our results suggest that RUNX3-mediated CCL5 repression is critical for modulating anti-tumor immunity.


Subject(s)
Chemokine CCL5/genetics , Core Binding Factor alpha Subunits/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Immunity , Animals , Antigens, CD/metabolism , Core Binding Factor beta Subunit/metabolism , Homeostasis/genetics , Immunity/genetics , Lymphocyte Activation/immunology , Matrix Attachment Region Binding Proteins/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Transgenic
8.
Life Sci Alliance ; 3(2)2020 02.
Article in English | MEDLINE | ID: mdl-31980555

ABSTRACT

Temporal down-regulation of the CD8 co-receptor after receiving positive-selection signals has been proposed to serve as an important determinant to segregate helper versus cytotoxic lineages by generating differences in the duration of TCR signaling between MHC-I and MHC-II selected thymocytes. By contrast, little is known about whether CD8 also modulates TCR signaling engaged by the non-classical MHC-I-like molecule, CD1d, during development of invariant natural killer T (iNKT) cells. Here, we show that constitutive transgenic CD8 expression resulted in enhanced differentiation of innate memory-like CD8+ thymocytes in both a cell-intrinsic and cell-extrinsic manner, the latter being accomplished by an increase in the IL-4-producing iNKT2 subset. Skewed iNKT2 differentiation requires cysteine residues in the intracellular domain of CD8α that are essential for transmitting cellular signaling. Collectively, these findings shed a new light on the relevance of CD8 down-regulation in shaping the balance of iNKT-cell subsets by modulating TCR signaling.


Subject(s)
CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Immunity, Innate , Natural Killer T-Cells/immunology , Animals , CD8 Antigens/genetics , Cell Differentiation/immunology , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Thymocytes/immunology , Transfection
9.
Mol Cells ; 43(2): 107-113, 2020 Feb 29.
Article in English | MEDLINE | ID: mdl-31926543

ABSTRACT

The Runt-related transcription factors (RUNX) transcription factors have been known for their critical roles in numerous developmental processes and diseases such as autoimmune disorders and cancer. Especially, RUNX proteins are best known for their roles in hematopoiesis, particularly during the development of T cells. As scientists discover more types of new immune cells, the functional diversity of RUNX proteins also has been increased over time. Furthermore, recent research has revealed complicated transcriptional networks involving RUNX proteins by the current technical advances. Databases established by next generation sequencing data analysis has identified ever increasing numbers of potential targets for RUNX proteins and other transcription factors. Here, we summarize diverse functions of RUNX proteins mainly on lymphoid lineage cells by incorporating recent discoveries.


Subject(s)
Core Binding Factor alpha Subunits/genetics , Transcription Factors/genetics , Cell Differentiation , Humans
10.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31818882

ABSTRACT

Acquired immune responses are initiated by activation of CD4+ helper T (Th) cells via recognition of antigens presented by conventional dendritic cells (cDCs). DCs instruct Th-cell polarization program into specific effector Th subset, which will dictate the type of immune responses. Hence, it is important to unravel how differentiation and/or activation of DC are linked with Th-cell-intrinsic mechanism that directs differentiation toward a specific effector Th subset. Here, we show that loss of Runx/Cbfß transcription factors complexes during DC development leads to loss of CD103+CD11b+ cDC2s and alters characteristics of CD103-CD11b+ cDCs in the intestine, which was accompanied with impaired differentiation of Rorγt+ Th17 cells and type 3 Rorγt+ regulatory T cells. We also show that a Runx-binding enhancer in the Rorc gene is essential for T cells to integrate cDC-derived signals to induce Rorγt expression. These findings reveal that Runx/Cbfß complexes play crucial and complementary roles in cDCs and Th cells to shape converging type 3 immune responses.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Dendritic Cells/metabolism , Intestinal Mucosa/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Adaptive Immunity , Animals , Cell Differentiation/immunology , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Mice , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
11.
Nat Immunol ; 20(10): 1262-1264, 2019 10.
Article in English | MEDLINE | ID: mdl-31515533
12.
J Exp Med ; 215(8): 2211-2226, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30045946

ABSTRACT

Tle/Groucho proteins are transcriptional corepressors interacting with Tcf/Lef and Runx transcription factors, but their physiological roles in T cell development remain unknown. Conditional targeting of Tle1, Tle3 and Tle4 revealed gene dose-dependent requirements for Tle proteins in CD8+ lineage cells. Upon ablating all three Tle proteins, generation of CD8+ T cells was greatly diminished, largely owing to redirection of MHC-I-selected thymocytes to CD4+ lineage; the remaining CD8-positive T cells showed aberrant up-regulation of CD4+ lineage-associated genes including Cd4, Thpok, St8sia6, and Foxp3 Mechanistically, Tle3 bound to Runx-occupied Thpok silencer, in post-selection double-positive thymocytes to prevent excessive ThPOK induction and in mature CD8+ T cells to silence Thpok expression. Tle3 also bound to Tcf1-occupied sites in a few CD4+ lineage-associated genes, including Cd4 silencer and St8sia6 introns, to repress their expression in mature CD8+ T cells. These findings indicate that Tle corepressors are differentially partitioned to Runx and Tcf/Lef complexes to instruct CD8+ lineage choice and cooperatively establish CD8+ T cell identity, respectively.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cell Lineage , Co-Repressor Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Gene Deletion , Mice, Inbred C57BL , Repressor Proteins/metabolism , Transcription Factors/metabolism
13.
Science ; 360(6392): 1007-1009, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29700224

ABSTRACT

The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

14.
Nat Commun ; 8(1): 702, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951542

ABSTRACT

T-lineage committed precursor thymocytes are screened by a fate-determination process mediated via T cell receptor (TCR) signals for differentiation into distinct lineages. However, it remains unclear whether any antecedent event is required to couple TCR signals with the transcriptional program governing lineage decisions. Here we show that Bcl11b, known as a T-lineage commitment factor, is essential for proper expression of ThPOK and Runx3, central regulators for the CD4-helper/CD8-cytotoxic lineage choice. Loss of Bcl11b results in random expression of these factors and, thereby, lineage scrambling that is disconnected from TCR restriction by MHC. Initial Thpok repression by Bcl11b prior to the pre-selection stage is independent of a known silencer for Thpok, and requires the last zinc-finger motif in Bcl11b protein, which by contrast is dispensable for T-lineage commitment. Collectively, our findings shed new light on the function of Bcl11b in priming lineage-specifying genes to integrate TCR signals into subsequent transcriptional regulatory mechanisms.CD4 and CD8 T cells develop in the thymus with their transcription programs controlled by ThPOK and Runx3, respectively. Here the authors show that a pre-commitment event modulated by the transcription factor, Bcl11b, is required for the proper expression of ThPOK and Runx3 and correct CD4/CD8 lineage commitment.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Repressor Proteins/genetics , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Helper-Inducer/cytology , Thymocytes/cytology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Cell Lineage , Gene Expression Regulation , Mice , Receptors, Antigen, T-Cell/genetics
15.
Cell Rep ; 19(6): 1176-1188, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494867

ABSTRACT

T cell receptor (TCR) signaling by MHC class I and II induces thymocytes to acquire cytotoxic and helper fates via the induction of Runx3 and ThPOK transcription factors, respectively. The mechanisms by which TCR signaling is translated into transcriptional programs for each cell fate remain elusive. Here, we show that, in post-selection thymocytes, a genome organizer, SATB1, activates genes for lineage-specifying factors, including ThPOK, Runx3, CD4, CD8, and Treg factor Foxp3, via regulating enhancers in these genes in a locus-specific manner. Indeed, SATB1-deficient thymocytes are partially re-directed into inappropriate T lineages after both MHC class I- and II-mediated selection, and they fail to generate NKT and Treg subsets. Despite its essential role in activating enhancers for the gene encoding ThPOK in TCR-signaled thymocytes, SATB1 becomes dispensable for maintaining ThPOK in CD4+ T cells. Collectively, our findings demonstrate that SATB1 shapes the primary T cell pool by directing lineage-specific transcriptional programs in the thymus.


Subject(s)
Lymphopoiesis , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocyte Subsets/cytology , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Cell Lineage , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Enhancer Elements, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/genetics , Mice , T-Lymphocyte Subsets/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
16.
Int Immunol ; 29(4): 165-172, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28444293

ABSTRACT

Since the first draft of the human genome sequence was released in 2001, unprecedentedly rapid progress has been made in whole genome-wide approaches by utilizing next-generation-sequencing technologies. The last decade alone has generated enormous data in the forms of exome sequencing, transcriptomes, transcription factor occupancy, genomic variation profiling and epigenetic modifications. One of the most striking realizations from sequencing studies has been the discovery and characterization of non-coding RNAs (ncRNAs). Although the extent to which ncRNAs are functional in vivo is still a controversial topic, there is at least a consensus that some ncRNAs are functional and that they play various roles in biology. Among the several kinds of ncRNAs, long ncRNAs (lncRNAs) in particular have received more attention because they have a larger potential to act as multifunctional regulators. Not surprisingly, researchers in the field of immunology have started to examine ncRNAs as new regulatory mechanisms. In this review, we will summarize some lncRNAs that have been reported to function in the immune system and then argue that there is still a long way to go before we can achieve a complete understanding of lncRNAs.


Subject(s)
Hematopoiesis/genetics , Immune System/physiology , Immunity/genetics , RNA, Untranslated/genetics , Animals , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Immunomodulation
17.
Adv Exp Med Biol ; 962: 395-413, 2017.
Article in English | MEDLINE | ID: mdl-28299670

ABSTRACT

During hematopoiesis, a variety of cells are generated from stem cells through successive rounds of cell fate determination processes. Studies in the last two decades have demonstrated the involvement of Runx transcription factor family members in differentiation of multiple types of hematopoietic cells. Along with evolutionary conservation, the Runx family is considered to be one of the ancestral regulators of hematopoiesis. It is conceivable that the Runx family is involved in shaping the immune system, which is then comprised of innate and acquired lymphoid cells in vertebrates. In this chapter, we will first summarize roles of Runx proteins during the development of T- and B-lymphocytes, which appeared later during evolution and express antigen specific receptors as a result of DNA recombination processes. We also discuss the recent findings that have unraveled the functions of Runx during differentiation of innate lymphoid cells (ILCs).


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Core Binding Factor alpha Subunits/immunology , Lymphocytes/immunology , T-Lymphocytes/immunology , Animals , Hematopoiesis/immunology , Humans
18.
Sci Rep ; 7: 41351, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28150718

ABSTRACT

A TCRß enhancer, known as the Eß enhancer, plays a critical role in V(D)J recombination and transcription of the Tcrb gene. However, the coordinated action of trans-acting factors in the activation of Eß during T cell development remains uncharacterized. Here, we characterized the roles of Runx complexes in the regulation of the Eß function. A single mutation at one of the two Runx binding motifs within the Eß severely impaired Tcrb activation at the initiation phase in immature thymocytes. However, TCRß expression level in mature thymocytes that developed under such a single Runx site mutation was similar to that of the control. In contrast, mutations at two Runx motifs eliminated Eß activity, demonstrating that Runx complex binding is essential to initiate Eß activation. In cells expressing Tcrb harboring rearranged V(D)J structure, Runx complexes are dispensable to maintain TCRß expression, whereas Eß itself is continuously required for TCRß expression. These findings imply that Runx complexes are essential for Eß activation at the initiation phase, but are not necessary for maintaining Eß activity at later developmental stages. Collectively, our results indicate that the requirements of trans-acting factor for Eß activity are differentially regulated, depending on the developmental stage and cellular activation status.


Subject(s)
Core Binding Factor alpha Subunits/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Receptors, Antigen, T-Cell, alpha-beta/genetics , Animals , Gene Deletion , Germ Cells/metabolism , Kinetics , Lymphocyte Activation/genetics , Mice , Mutation/genetics , Protein Binding , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombination, Genetic , Transcription, Genetic
19.
Eur J Immunol ; 46(3): 531-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26763078

ABSTRACT

T-cell development occurs in multipotent progenitors arriving in the thymus, which provides a highly specialized microenvironment. Specification and sequential commitment processes to T cells begin in early thymic progenitors upon receiving thymus-specific environmental cues, resulting in the activation of the genetically programmed transcriptional cascade that includes turning on and off numerous transcription factors in a precise manner. Thus, early thymocyte differentiation has been an excellent model system to study cell differentiation processes. This review summarizes recent advances in our knowledge on thymic T-cell development from newly arrived multipotent T-cell progenitors to fully committed T-cell precursors, from the transcriptional regulation perspective.


Subject(s)
Gene Expression Regulation , T-Lymphocytes/immunology , Thymus Gland/immunology , Transcription Factors/metabolism , Transcriptional Activation , Cell Differentiation/genetics , Cell Lineage , Lymphocyte Activation , Precursor Cells, T-Lymphoid/physiology , T-Lymphocytes/physiology , Thymus Gland/cytology , Thymus Gland/physiology
20.
Proc Natl Acad Sci U S A ; 111(33): 12151-6, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092306

ABSTRACT

The fetal liver is a major hematopoietic site containing progenitor cells that give rise to nearly all blood cells, including B-1 cells. Because the fetal liver is not a de novo site of hematopoietic stem cell (HSC) or progenitor-cell emergence, it must be seeded by yolk sac (YS)-derived erythromyeloid progenitors at embryonic day (E) 8.5-E10 and aorta-gonado-mesonephros (AGM)-derived HSCs at E10.5-E11.5. Although the B-1 progenitor cell pool in the fetal liver is considered to be of HSC origin, we have previously proposed that YS-derived B-1 progenitors may also contribute to this pool. Until now, it has been impossible to determine whether HSC-independent B-1 progenitor cells exist in the fetal liver. Here, we demonstrate the presence of transplantable fetal-liver B-1 and marginal zone B progenitor cells in genetically engineered HSC-deficient embryos. HSC-deficient YS and AGM tissues produce B-1 progenitors in vitro and thus may serve as sites of origin for the B-1 progenitors that seed the fetal liver. Furthermore, we have found that core-binding factor beta (Cbfß) expression is required for fetal-liver B-1 progenitor cell maturation and expansion. Our data provide, to our knowledge, the first evidence for the presence of B-1 progenitor cells in the fetal liver that arise independently of HSCs and implicate Cbfß as a critical molecule in the development of this lineage.


Subject(s)
Core Binding Factor beta Subunit/genetics , Hematopoietic Stem Cells/cytology , Liver/embryology , Animals , Flow Cytometry , Green Fluorescent Proteins/genetics , Mice , Mice, Transgenic , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...