Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Nephrol ; 25(1): 155, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702607

ABSTRACT

BACKGROUND: Oxidative stress, an imbalance between reactive oxygen species production and antioxidant capacity, increases in patients with coronavirus disease (COVID-19) or renal impairment. We investigated whether combined COVID-19 and end-stage renal disease (ESRD) would increase oxidative stress levels compared to each disease alone. METHODS: Oxidative stress was compared among three groups. Two groups comprised patients with COVID-19 referred to the hospital with or without renal impairment (COVID-ESRD group [n = 18]; COVID group [n = 17]). The third group (ESRD group [n = 18]) comprised patients without COVID-19 on maintenance hemodialysis at a hospital. RESULTS: The total oxidative stress in the COVID-ESRD group was lower than in the COVID group (p = 0.047). The total antioxidant status was higher in the COVID-ESRD group than in the ESRD (p < 0.001) and COVID (p < 0.001) groups after controlling for covariates. The oxidative stress index was lower in the COVID-ESRD group than in the ESRD (p = 0.001) and COVID (p < 0.001) groups. However, the three oxidative parameters did not differ significantly between the COVID and COVID-ESRD groups. CONCLUSIONS: The role of reactive oxygen species in the pathophysiology of COVID-19 among patients withESRD appears to be non-critical. Therefore, the provision of supplemental antioxidants may not confer a therapeutic advantage, particularly in cases of mild COVID-19 in ESRD patients receiving hemodialysis. Nonetheless, this area merits further research.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Oxidative Stress , Humans , COVID-19/complications , COVID-19/metabolism , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/complications , Pilot Projects , Male , Female , Middle Aged , Aged , Antioxidants/metabolism , Renal Dialysis , SARS-CoV-2 , Reactive Oxygen Species/metabolism
2.
Adv Sci (Weinh) ; 11(21): e2308840, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460159

ABSTRACT

Selective spectral discrimination of visible and near-infrared light, which accurately distinguishes different light wavelengths, holds considerable promise in various fields, such as automobiles, defense, and environmental monitoring. However, conventional imaging technologies suffer from various issues, including insufficient spatial optimization, low definition, and optical loss. Herein, a groundbreaking advancement is demonstrated in the form of a dual-band photodiode with distinct near-infrared- and visible-light discrimination obtained via simple voltage control. The approach involves the monolithic stacking integration of methylammonium lead iodide (MAPbI3) and Si semiconductors, resulting in a p-Si/n-phenyl-C61-butyric acid methyl ester/i-MAPbI3/p-spiro-MeOTAD (PNIP) device. Remarkably, the PNIP configuration can independently detect the visible and near-infrared regions without traditional optical filters under a voltage range of 3 to -3 V. In addition, an imaging system for a prototype autonomous vehicle confirms the capability of the device to separate visible and near-infrared light via an electrical bias and practicality of this mechanism. Therefore, this study pushes the boundaries of image sensor development and sets the stage for fabricating compact and power-efficient photonic devices with superior performance and diverse functionality.

SELECTION OF CITATIONS
SEARCH DETAIL