Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 52(23): 8020-8029, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37226523

ABSTRACT

Herein, we prepared an o-carborane compound (9biAT) linked to a 9,9'-bianthracene moiety at each C9-position. The compound exhibited reddish emission in solid and solution states. The solvatochromism effect and theoretical calculation results for the excited (S1) state of 9biAT verified that the emission was attributed to ICT transition. In particular, the structural rigidity and the orthogonal geometry around the carborane enhanced ICT-based emission in the solution state at 298 K, resulting in a considerably high quantum efficiency (Φem = 86%) in cyclohexane. In addition, both the Φem value and radiative decay constant (kr) gradually decreased with an increase in the polarity of the organic solvent. Theoretical modelling of the charge distribution in the S1-optimised geometry revealed that charge recombination in the radiative-relaxation process upon ICT transition could be delayed under polar conditions. Consequently, a high Φem value in the solution state at room temperature can be obtained by maintaining molecular rigidity and controlling the polarity of the environment.

2.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235102

ABSTRACT

The efficiency of intramolecular charge transfer (ICT)-based emission on π-aromatic-group-appended closo-ortho-carboranyl luminophores is known to be affected by structural fluctuations and molecular geometry, but investigation of this relationship has been in progress to date. In this study, four naphthyl-based bis-o-carboranyl compounds, in which hydrogen (15CH and 26CH) or trimethysilyl groups (15CS and 26CS) were appended at the o-carborane cage, were synthesized and fully characterized. All the compounds barely displayed an emissive trace in solution at 298 K; however, 15CH and 26CH distinctly exhibited a dual emissive pattern in rigid states (in solution at 77 K and in films), attributed to locally excited (LE) and ICT-based emission, while 15CS and 26CS showed strong ICT-based greenish emission. Intriguingly, the molecular structures of the four compounds, analyzed by single X-ray crystallography, showed that the C-C bond axis of the o-carborane cage in the trimethysilyl group-appended compounds 15CS and 26CS were more orthogonal to the plane of the appended naphthyl group than those in 15CH and 26CH. These features indicate that 15CS and 26CS present an efficient ICT transition based on strong exo-π-interaction, resulting in a higher quantum efficiency (Φem) for ICT-based radiative decay than those of 15CH and 26CH. Moreover, the 26CS structure revealed most orthogonal geometry, resulting in the highest Φem and lowest knr values for the ICT-based emission. Consequently, all the findings verified that efficient ICT-based radiative decay of aromatic group-appended o-carboranyl luminophores could be achieved by the formation of a specific geometry between the o-carborane cage and the aromatic plane.

SELECTION OF CITATIONS
SEARCH DETAIL