Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38743438

ABSTRACT

We selectively improved the viewing angle characteristics and light extraction efficiency of blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) by tailoring a nanofiber-shaped Si3N4 layer, which was used as an internal scattering layer. The diameter of the polymer nanofibers changed according to the mass ratio of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) in the polymer solution for electrospinning. The Si3N4 nanofiber (SNF) structure was fabricated by etching an Si3N4 film using the PAN/PMMA nanofiber as a mask, making it easier to adjust parameters, such as the diameter, open ratio, and height, even though the SNF structure was randomly shaped. The SNF structures exhibited lower transmittance and higher haze with increasing diameter, showing little correlation with their height. However, all the structures demonstrated a total transmittance of over 80%. Finally, by applying the SNF structures to the blue TADF OLEDs, the external quantum efficiency was increased by 15.6%. In addition, the current and power efficiencies were enhanced by 23.0% and 25.6%, respectively. The internal light-extracting SNF structure also exhibited a synergistic effect with the external light-extracting structure. Furthermore, when the viewing angle changed from 0° to 60°, the peak wavelength and CIE coordinate shift decreased from 20 to 6 nm and from 0.0561 to 0.0243, respectively. These trends were explained by the application of Snell's law to the light path and were ultimately validated through finite-difference time-domain simulations.

2.
JBMR Plus ; 8(2): ziad014, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38505527

ABSTRACT

Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced ß-catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild-type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.

3.
PLoS Pathog ; 19(10): e1011743, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871107

ABSTRACT

Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.


Subject(s)
Extracellular Vesicles , Periodontal Diseases , Periodontitis , Mice , Animals , Neuroinflammatory Diseases , Trigeminal Ganglion , Myeloid Differentiation Factor 88/metabolism , Periodontitis/metabolism , Periodontal Diseases/metabolism , Blood-Brain Barrier/metabolism , Cytokines/metabolism , Mice, Knockout , Extracellular Vesicles/metabolism
4.
Sensors (Basel) ; 23(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687934

ABSTRACT

Recently, the application of cobalt iron boron (CoFeB) thin films in magnetic sensors has been widely studied owing to their high magnetic moment, anisotropy, and stability. However, most of these studies were conducted on rigid silicon substrates. For diverse applications of magnetic and angle sensors, it is important to explore the properties of ferromagnetic thin films grown on nonrigid deformable substrates. In this study, representative deformable substrates (polyimide (PI), polyethylene naphthalate (PEN), and polydimethylsiloxane (PDMS)), which can be bent or stretched, were used to assess the in-plane magnetic field angle-dependent properties of amorphous Ta/CoFeB/MgO/Ta thin films grown on deformable substrates. The effects of substrate roughness, tensile stress, deformable substrate characteristics, and sputtering on magnetic properties, such as the coercive field (Hc), remanence over saturation magnetization (Mr/Ms), and biaxial characteristics, were investigated. This study presents an unconventional foundation for exploring deformable magnetic sensors capable of detecting magnetic field angles.

SELECTION OF CITATIONS
SEARCH DETAIL
...