Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34578763

ABSTRACT

In this work, we prepared network-structured carbon nanofibers using polyacrylonitrile blends (PAN150 and PAN85) with different molecular weights (150,000 and 85,000 g mol-1) as precursors through electrospinning/hot-pressing methods and stabilization/carbonization processes. The obtained PAN150/PAN85 polymer nanofibers (PNFs; PNF-73, PNF-64 and PNF-55) with different weight ratios of 70/30, 60/40 and 50/50 (w/w) provided good mechanical and electrochemical properties due to the formation of physically bonded network structures between the blended PAN nanofibers during the hot-processing/stabilization processes. The resulting carbonized PNFs (cPNFs; cPNF-73, cPNF-64, and cPNF-55) were utilized as anode materials for supercapacitor applications. cPNF-73 exhibited a good specific capacitance of 689 F g-1 at 1 A g-1 in a three-electrode set-up compared to cPNF-64 (588 F g-1 at 1 A g-1) and cPNF-55 (343 F g-1 at 1 A g-1). In addition, an asymmetric hybrid cPNF-73//NiCo2O4 supercapacitor device also showed a good specific capacitance of 428 F g-1 at 1 A g-1 compared to cPNF-64 (400 F g-1 at 1 A g-1) and cPNF-55 (315 F g-1 at 1 A g-1). The cPNF-73-based device showed a good energy density of 1.74 W h kg-1 (0.38 W kg-1) as well as an excellent cyclic stability (83%) even after 2000 continuous charge-discharge cycles at a current density of 2 A g-1.

2.
Molecules ; 25(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322446

ABSTRACT

In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g-1 at 0.7 A g-1 and good rate capability of 34.8% at 4.9 A g-1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg-1 at a power density of 490 W kg-1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.


Subject(s)
Carbon Fiber/chemistry , Cobalt/chemistry , Imides/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Carbon/chemistry , Electric Capacitance , Electric Conductivity , Electrochemistry/methods , Electrodes , Metals , Microscopy, Electron, Scanning , Nanostructures/chemistry , Nanotubes , Nickel , Oxidation-Reduction , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL