Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Metabolites ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786727

ABSTRACT

Soft tissue sarcoma (STS) is a relatively rare malignancy, accounting for about 1% of all adult cancers. It is known to have more than 70 subtypes. Its rarity, coupled with its various subtypes, makes early diagnosis challenging. The current standard treatment for STS is surgical removal. To identify the prognosis and pathophysiology of STS, we conducted untargeted metabolic profiling on pre-operative and post-operative plasma samples from 24 STS patients who underwent surgical tumor removal. Profiling was conducted using ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Thirty-nine putative metabolites, including phospholipids and acyl-carnitines were identified, indicating changes in lipid metabolism. Phospholipids exhibited an increase in the post-operative samples, while acyl-carnitines showed a decrease. Notably, the levels of pre-operative lysophosphatidylcholine (LPC) O-18:0 and LPC O-16:2 were significantly lower in patients who experienced recurrence after surgery compared to those who did not. Metabolic profiling may identify aggressive tumors that are susceptible to lipid synthase inhibitors. We believe that these findings could contribute to the elucidation of the pathophysiology of STS and the development of further metabolic studies in this rare malignancy.

2.
Clin Pharmacol Drug Dev ; 12(12): 1204-1210, 2023 12.
Article in English | MEDLINE | ID: mdl-37622634

ABSTRACT

Raloxifene hydrochloride shows poor bioavailability (only 2%) when orally administered because of its poor aqueous solubility and its extensive first-pass metabolism. A new micronized formulation of raloxifene was developed to improve bioavailability via enhanced gastrointestinal absorption. The primary objective of this study was to evaluate the pharmacokinetic characteristics of a new micronized raloxifene formulation (AD-101) in comparison with the conventional raloxifene formulation. This study was designed as an open-label, randomized, 2-treatment-period, crossover study with a 2-week washout period. Two treatments consisted of micronized raloxifene 45 mg daily; and conventional raloxifene 60 mg daily administered in fasting conditions. Plasma raloxifene concentrations were determined by a validated method using ultra-fast liquid chromatography-tandem mass spectrometry, and pharmacokinetic parameters were calculated using a noncompartmental model. In total, 49 subjects completed the study. The geometric mean ratio (micronized/conventional) of the maximum concentration and the area under the plasma concentration-time curve from time zero to the last concentration values were 1.08 (90% CI, 0.95-1.24) and 0.97 (90% CI, 0.89-1.05), respectively. The adverse event profile did not differ between the 2 formulations. The results demonstrate that micronized formulation of raloxifene 45 mg is equivalent to conventional formulation of raloxifene 60 mg when administered at the single dose in the fasted state. After single oral dosing of AD-101, there were no serious or unexpected adverse events.


Subject(s)
Raloxifene Hydrochloride , Humans , Raloxifene Hydrochloride/adverse effects , Cross-Over Studies , Healthy Volunteers , Biological Availability
3.
Transl Clin Pharmacol ; 31(2): 105-113, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440782

ABSTRACT

Two open-label, randomized, two-period crossover studies were conducted to investigate the pharmacokinetic (PK) properties, safety, and bioequivalence of the test formulation (KD4004), a new fixed-dose combination (FDC) formulation of dapagliflozin and metformin extended release (XR) tablets, relative to the reference formulation (10 mg dapagliflozin/1,000 mg metformin XR FDC tablet) in healthy subjects under fasting (Part A) and fed (Part B) conditions. After giving the dose, serial blood samples were collected for a period of 48 hours. Primary PK parameters (AUC0-t and Cmax) were used to assess bioequivalence between two dapagliflozin/metformin XR (10/1,000 mg) FDC formulations under fed and fasting conditions. Safety and tolerability were also evaluated. Part A and Part B were completed by 32 and 37 subjects, respectively. Bioequivalence of the two FDC formulations of dapagliflozin and metformin XR tablets was established in both the fasted and the fed conditions as the 90% confidence interval of the ratios of adjusted geometric means for AUC0-t and Cmax were contained within the predefined range of 0.800-1.250 bioequivalence criteria. Single-dose administration of dapagliflozin and metformin XR was safe and well tolerated as the two FDC formulations. In conclusion, both FDC formulations of dapagliflozin and metformin XR tablets were bioequivalent in fed and fasted subjects. All treatments were well tolerated. Trial Registration: Clinical Research Information Service Identifier: KCT0004026.

4.
Article in English | MEDLINE | ID: mdl-37001203

ABSTRACT

Vitamin D is important because it has roles in maintaining musculoskeletal health, redox homeostasis, and the immune system; however, it is commonly dysregulated by endocrine disrupting chemicals, particularly phthalates and bisphenol A (BPA). Continuous exposure to phthalates and BPA may alter the endogenous metabolite profiles associated with vitamin D activity, although the specific metabolites are yet to be identified. In this study, we identified the endogenous metabolites altered by phthalates and BPA exposure through untargeted metabolic profiling and investigated the role of these metabolites in vitamin D activity. Plasma metabolic profiling using liquid chromatography-mass spectrometry was performed in two groups: severe 25-hydroxyvitamin D (25(OH)D) deficiency and high exposure to phthalates and BPA (Group A) and 25(OH)D deficiency and low exposure to phthalates and BPA (Group B). Multivariate analysis revealed a distinct separation between the two groups. A total of six metabolites were annotated, of which levels of two were significantly different between the two groups: platelet-activating factor (PAF) C16 or lysophosphatidylcholine (lysoPC) 18:0, and 11Z-eicosenamide. Plasma levels of PAF C16 or lysoPC 18:0 were increased in Group A and exhibited an area under the curve of 0.769 with an accuracy of 74.4% in a receiver operating characteristic curve analysis. These metabolites are generated as byproducts of lipid peroxidation, which supports the fact that phthalates and BPA induce oxidative stress in cells. Furthermore, PAF C16 and lysoPC 18:0 may be involved in the network that interferes with the antioxidant activity of vitamin D upon exposure to phthalates and BPA. This study results provide useful information on how the activity of vitamin D on the antioxidant system is inhibited when exposure to phthalates and BPA.


Subject(s)
Antioxidants , Phthalic Acids , Humans , Antioxidants/pharmacology , Vitamin D , Benzhydryl Compounds , Vitamins , Chromatography, Liquid , Mass Spectrometry
5.
Transl Clin Pharmacol ; 30(3): 136-144, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36247744

ABSTRACT

A new fixed-dose combination (FDC) formulation of raloxifene 60 mg and cholecalciferol 800 IU was developed to improve the medication compliance and overall efficacy of raloxifene treatment in postmenopausal osteoporosis patients. The aim of this study was to compare the pharmacokinetics between two tablets of FDC formulation of raloxifene/cholecalciferol and the two products administered concomitantly at respective doses. This randomized, open-label, single-dose, two-treatment, two-way crossover study included 46 volunteers. During each treatment period, subjects received the test formulation (FDC formulation containing raloxifene and cholecalciferol) or the reference formulation (co-administration of raloxifene and cholecalciferol), with a 14-d washout period. Serial blood samples were collected periodically over 96 hours after drug intake. In total, 46 subjects completed the study. The geometric mean ratios and its 90% confidence intervals of the FDC to the single agents for the area under the concentration-time curve from zero to the last quantifiable time point and the maximum plasma concentration met the regulatory criteria for bioequivalence: 1.1364 (1.0584-1.2201) and 1.1010 (0.9945-1.2188) for raloxifene and 1.0266 (0.9591-1.0989) and 1.0354 (0.9816-1.0921) for baseline-corrected cholecalciferol, respectively. Both formulations were well tolerated. No significant differences was observed in the incidence of adverse events between the two treatments. It was concluded that two tablets of the newly developed FDC formulation of raloxifene and cholecalciferol and the corresponding two agents administered concomitantly at respective doses were bioequivalent. Trial Registration: ClinicalTrials.gov Identifier: NCT03010267.

6.
Transl Clin Pharmacol ; 30(2): 87-98, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800668

ABSTRACT

Although wearable electrocardiograms (ECGs) are being increasingly applied in clinical settings, validation methods have not been standardized. As an exploratory evaluation, we performed a multicenter clinical trial implementing an approved wearable patch ECG. Healthy male adults were enrolled in 2 study centers. The approved ECGs were deployed for 6 hours, and pulse rates were measured independently with conventional pulse oximetry at selected time points for correlation analyses. The transmission status of the data was evaluated by heart rates and classified into valid, invalid, and missing. A total of 55 subjects (40 in center 1 and 15 in center 2) completed the study. Overall, 77.40% of heart rates were within the valid range. Invalid and missing data accounted for 1.42% and 21.23%, respectively. There were significant differences in valid and missing data between centers. The proportion of missing data in center 1 (24.77%) was more than twice center 2 (11.77%). Heart rates measured by the wearable ECG and conventional pulse oximetry showed a poor correlation (intraclass correlation coefficient = 0.0454). In conclusion, we evaluated the multicenter feasibility of implementing wearable ECGs. The results suggest that systems to mitigate multicenter discrepancies and remove artifacts should be implemented prior to performing a clinical trial. Trial Registration: ClinicalTrials.gov Identifier: NCT05182684.

7.
Drug Des Devel Ther ; 16: 619-634, 2022.
Article in English | MEDLINE | ID: mdl-35281316

ABSTRACT

Background: YYD601 was developed as a novel dual delayed release (DDR) formulation of esomeprazole to prolong the plasma esomeprazole concentration and extend the duration of acid suppression. Purpose: The pharmacokinetic (PK) and pharmacodynamics (PD) characteristics of YYD601 after single and multiple oral administrations were investigated in healthy Korean adults under fasting and fed conditions, and compared with the original esomeprazole capsule. Methods: In the single-center, randomized, open-label, parallel-design, two-period study, thirty two volunteers were enrolled into four dosing groups, including esomeprazole 40-mg (group A), YYD60130-mg (group B), YYD601 40-mg (group C), and YYD601 60-mg (group D) once daily for 5 days. Blood samples were collected for PK analysis, before and up to 24 h after dosing. For PD characteristics of YYD601, the percentages of time with intragastric pH > 4 over a 24-h period and during night-time following multiple oral administrations were evaluated. Results: A total of 27 subjects completed the study. YYD601 showed a dual-peak PK profile under fasting condition, with delayed Tmax, compared with conventional formulation. There were no significant differences in the AUC values adjusted for dose between the three YYD601 dosage groups and the conventional esomeprazole 40 mg. The esomeprazole AUC following single and multiple administration decreased with food intake by approximately 33%. YYD601 showed a linear pharmacokinetic profile in the dose range studied. There was no statistically significant difference in increase in mean percentage of time with intragastric pH > 4 for 24-hour and during night-time between the three different doses of YYD601 and the conventional formulation. The treatments were well-tolerated during the study and no serious adverse events were observed. Conclusion: YYD601 30 mg has a comparable effect on gastric acid inhibition as conventional esomeprazole 40 mg following once daily oral administration. Single and multiple oral dosing of YYD601 up to 60 mg were safe and well-tolerated throughout the study. Clinical Trial Registry: http://clinicaltrials.gov, NCT03558477 (date of registration: June 15, 2018; study period: between October 2017 and February 2018).


Subject(s)
Esomeprazole , Fasting , Administration, Oral , Adult , Area Under Curve , Cross-Over Studies , Esomeprazole/pharmacology , Healthy Volunteers , Humans , Volunteers
8.
Clin Pharmacol Drug Dev ; 11(5): 623-631, 2022 05.
Article in English | MEDLINE | ID: mdl-34984851

ABSTRACT

Osteoporosis is a common skeletal disorder, often leading to fragility fracture. Combination therapy with raloxifene, a selective estrogen receptor modulator, and cholecalciferol (vitamin D3 ) has been proposed to improve the overall efficacy and increase compliance of raloxifene therapy for postmenopausal osteoporosis. To our knowledge, there has been no report of any study on the pharmacokinetic interaction between raloxifene and cholecalciferol. This study aimed to evaluate the possible pharmacokinetic interactions between raloxifene and cholecalciferol in healthy adult male Korean volunteers. Twenty subjects completed this open-label, randomized, single-dose, 3-period, 6-sequence, crossover phase 1 study with a 14-day washout period. Serial blood samples were collected from 20 hours before dosing to 96 hours after dosing. The plasma concentrations of raloxifene and cholecalciferol were determined using a validated method for high-performance liquid chromatography with tandem mass spectrometry. The geometric mean ratios (90%CIs) for area under the plasma concentration-time curve from time 0 to the last quantifiable time point and maximum plasma concentration of raloxifene with or without cholecalciferol were 1.02 (0.87-1.20) and 0.87 (0.70-1.08), respectively. For baseline-corrected cholecalciferol, geometric mean ratios (90%CIs) of area under the plasma concentration-time curve from time 0 to the last quantifiable time point and maximum plasma concentration with or without raloxifene were 1.01 (0.93-1.09) and 0.99 (0.92-1.06), respectively. Concurrent treatment with raloxifene and cholecalciferol was generally well tolerated. These results suggest that raloxifene and cholecalciferol have no clinically relevant pharmacokinetic drug-drug interactions when administered concurrently. All treatments were well tolerated, with no serious adverse events.


Subject(s)
Cholecalciferol , Raloxifene Hydrochloride , Adult , Cholecalciferol/adverse effects , Cross-Over Studies , Drug Interactions , Healthy Volunteers , Humans , Male , Raloxifene Hydrochloride/adverse effects
9.
Transl Clin Pharmacol ; 29(3): 160-170, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34621708

ABSTRACT

ß-Lapachone has been reported to have anticancer and various other therapeutic effects, but is limited in clinical applications by its low bioavailability. pH-Dependent isomerization can be suggested as one plausible factor influencing its low bioavailability. Since it is known that ß-lapachone is converted to its isomer, α-lapachone in hydrochloric acid (HCl) solution, isomerization in the human body may be driven by HCl in the gastric fluid. The purpose of this study was to evaluate the possibility of isomerization of ß-lapachone in the human body. Chemical reactions were conducted using simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.5) at 37°C. ß-Lapachone was observed in SGF at 37°C for 1 hour and SIF for 3 hours. In addition, biofluid analysis was performed on plasma samples 1 hour and 4 hours, and on urine sample 12 hours after oral administration of 100 mg MB12066, a synthetic ß-lapachone, in healthy adult male. All samples were analyzed using liquid chromatography-tandem mass spectrometry. Only ß-lapachone peaks existed in the spectra obtained from SGF and SIF. No isomerization of ß-lapachone was observed in the analysis of any of the human samples. In the current study, the possibility of pH-dependent isomerization of ß-lapachone in the human body was not confirmed.

10.
Anal Sci ; 37(8): 1105-1110, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33390413

ABSTRACT

A rapid analytical method developed for the analysis of ß-lapachone in in vitro samples could not be directly applied to the analysis of clinical samples because of interference from unknown substances. Here, we developed and validated a rapid interference-free analytical method to accurately determine ß-lapachone levels in human plasma using liquid chromatography-tandem mass spectrometry. First, we achieved the baseline-separation of ß-lapachone from any interfering substances within a total run time of 4 min by adjusting the eluent strength of the mobile phase. Second, precursor-ion scanning revealed the identity of the interfering substances. Sulfonate- or glucuronide-conjugated metabolites were converted to ß-lapachone in an electrospray ion source, causing interference. In a method validation study, calibration curves for ß-lapachone in human plasma were linear over a concentration range from 0.5 to 200 ng/mL (r > 0.999), and the lower limit of quantification was 0.5 ng/mL. The other validation parameters, including intra- and interday accuracy and precision, were acceptable with a coefficient of variation less than 10% (n = 5). The validated analytical method was successfully applied to a pharmacokinetic study of a single, oral dose of 100 mg MB12066 (a clinical form of ß-lapachone) in healthy volunteers.


Subject(s)
Naphthoquinones , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization
11.
Pharmaceutics ; 12(9)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932576

ABSTRACT

Dyslipidemia is a major risk factor for development of atherosclerosis and cardiovascular disease (CVD). Effective lipid-lowering therapies has led to CVD risk reduction. This study evaluated the possible pharmacokinetic interactions between fenofibrate, a peroxisome proliferators-activated receptors α agonist, and pitavastatin, a 3-hydoxy-3-methylglutaryl-coenzyme A reductase inhibitor, in healthy Korean subjects. The study design was an open-label, randomized, multiple-dose, three-period, and six-sequence crossover study with a 10-day washout in 24 healthy volunteers. It had three treatments: 160 mg of micronized fenofibrate once daily for 5 days; 2 mg of pitavastatin once daily for 5 days; and 160 mg of micronized fenofibrate with 2 mg of pitavastatin for 5 days. Serial blood samples were collected at scheduled intervals for up to 48 h after the last dose in each period to determine the steady-state pharmacokinetics of both drugs. Plasma concentrations of fenofibric acid and pitavastatin were measured using a validated high-performance liquid chromatography with the tandem mass spectrometry method. A total of 24 subjects completed the study. Pitavastatin, when co-administered with micronized fenofibrate, had no effect on the Cmax,ss and AUCτ,ss of fenofibric acid. The Cmax,ss and AUCτ,ss of pitavastatin were increased by 36% and 12%, respectively, when co-administered with fenofibrate. Combined treatment with pitavastatin and micronized fenofibrate was generally well tolerated without serious adverse events. Our results demonstrated no clinically significant pharmacokinetic interactions between micronized fenofibrate and pitavastatin when 160 mg of micronized fenofibrate and 2 mg of pitavastatin are co-administered. The treatments were well tolerated during the study, with no serious adverse events.

12.
Transl Clin Pharmacol ; 28(2): 92-101, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32656160

ABSTRACT

This study compared the pharmacokinetics of a fixed-dose combination (FDC) of candesartan (16 mg) and amlodipine (10 mg) versus coadministration of individual formulations to clarify the bioequivalence of the FDC. In this randomized, open-label, single-dose, 2-treatment, 2-way crossover study, healthy Korean volunteers received a single dose of candesartan (16 mg) with amlodipine (10 mg) as either an FDC or single agents concomitantly administered, with a 2-week washout period. Serial blood samples were collected up to 72 hours after dosing for each treatment period, and plasma concentrations of candesartan and amlodipine were measured using a validated liquid chromatography-tandem mass spectrometry method. A total of 39 subjects completed the study. The geometric mean ratios (GMRs) and 90% confidence intervals (CIs) for the area under the plasma concentration-time curve from time 0 to the last measurement (AUC0-t) and the peak plasma concentration (Cmax) for candesartan were 1.0182 (0.9562-1.0841) and 0.9492 (0.8726-1.0324), respectively. The GMR and 90% CI for the AUC0-t and Cmax for amlodipine were 1.0552 (1.0255-1.0857) and 1.0668 (1.0259-1.1094), respectively. In conclusion, the new FDC formulation of candesartan (16 mg) and amlodipine (10 mg) was bioequivalent to the concomitant administration of single agents. A single dose of candesartan/amlodipine as the FDC or as single agents was well tolerated. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02988362.

13.
Drug Des Devel Ther ; 14: 2101-2111, 2020.
Article in English | MEDLINE | ID: mdl-32546973

ABSTRACT

OBJECTIVE: Fimasartan, an angiotensin II type 1 receptor blocker, and linagliptin, a dipeptidyl-peptidase-4 inhibitor, are frequently coadministered to treat patients with hypertension and diabetes, respectively. This study sought to evaluate the pharmacokinetic interactions between fimasartan and linagliptin after co-administration in healthy Korean subjects. METHODS: The overall study was divided into two separate parts, with each part designed as an open-label, multiple-dose, two-period, and single-sequence study. In Part A, to investigate the effect of linagliptin on fimasartan, 25 subjects received 120 mg fimasartan alone once daily for seven days during Period I, and 120 mg fimasartan with 20 mg linagliptin for seven days during Period II. In Part B, to examine the effect of fimasartan on linagliptin, 12 subjects received only linagliptin once daily for seven days during Period I, followed by concomitant administration of fimasartan for seven days during Period II, at the same doses used in Part A. Serial blood samples were collected at scheduled intervals for up to 24 h after the last dose to determine the steady-state pharmacokinetics of both drugs. RESULTS: Thirty-six subjects completed the study. The geometric mean ratio and 90% confidence intervals for maximum plasma concentration at steady state (Cmax,ss) and area under the concentration-time curve at steady state (AUCτ,ss) of fimasartan with or without linagliptin were 1.2633 (0.9175-1.7396) and 1.1740 (1.0499-1.3126), respectively. The corresponding values for Cmax,ss and AUCτ,ss of linagliptin with or without fimasartan were 0.9804 (0.8480-1.1336) and 0.9950 (0.9322-1.0619), respectively. A total of eight adverse events (AEs) were reported and the incidence of AEs did not increase significantly with co-administration of the drugs. CONCLUSION: Our results suggest that there are no clinically significant pharmacokinetic interactions between fimasartan and linagliptin when co-administered. Treatments were well tolerated during the study, with no serious adverse effects. CLINICAL TRIAL REGISTRY: http://clinicaltrials.gov, NCT03250052.


Subject(s)
Biphenyl Compounds/pharmacokinetics , Linagliptin/pharmacokinetics , Pyrimidines/pharmacokinetics , Tetrazoles/pharmacokinetics , Administration, Oral , Adult , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/blood , Dose-Response Relationship, Drug , Drug Interactions , Healthy Volunteers , Humans , Linagliptin/administration & dosage , Linagliptin/blood , Male , Middle Aged , Pyrimidines/administration & dosage , Pyrimidines/blood , Tetrazoles/administration & dosage , Tetrazoles/blood
14.
BMC Med Inform Decis Mak ; 20(1): 105, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522263

ABSTRACT

BACKGROUND: Prior studies have explored the use of regular reminders to improve adherence among kidney transplant recipients (KTRs), but none have included real-time alarms about drug dosage, frequency, and interval. In the present study, we aimed to evaluate the efficacy and stability of an information and communication technology (ICT)-based centralized monitoring system for increasing medication adherence among Korean KTRs. METHODS: In this prospective, multicenter, randomized controlled study, enrolled KTRs were randomized to either the ICT-based centralized monitoring group or control group. The ICT-based centralized monitoring system alerted both patients and medical staff with texts and pill box alarms if there was a missed dose or a dosage/time error. We compared the two groups in terms of medication adherence and transplant outcomes over 6 months, and evaluated patient satisfaction with the ICT-based monitoring system. RESULTS: Among 114 enrolled KTRs, 57 were assigned to the ICT-based centralized monitoring group and 57 to the control group. The two groups did not significantly differ in mean adherence at each follow-up visit. The intrapatient variability of tacrolimus and mycophenolic acid levels, renal function, and adverse transplant outcomes did not differ between the intervention and control groups, or between the intervention group with feedback generation and the intervention group without feedback generation. Patients showed high overall satisfaction with the ICT-based centralized monitoring system, which significantly improved across the study period (p = 0.012). CONCLUSIONS: Due to high baseline adherence, the ICT-based centralized monitoring system did not maximize medication adherence or enhance transplant outcomes among Korean KTRs. However, patients were highly satisfied with the system. Our results suggest that the ICT-based centralized monitoring system could be successfully applied in clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03136588. Registered 20 April 2017 - Retrospectively registered.


Subject(s)
Information Technology , Kidney Transplantation , Medication Adherence , Adult , Communication , Female , Humans , Immunosuppressive Agents , Male , Middle Aged , Prospective Studies
15.
J Ginseng Res ; 44(2): 229-237, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32148404

ABSTRACT

BACKGROUND: We investigated the tolerability and pharmacokinetic properties of various ginsenosides, including Rb1, Rb2, Rc, Rd, and compound K, after single or multiple administrations of red ginseng extract in human beings. METHODS: Red ginseng extract (dried ginseng > 60%) was administered once and repeatedly for 15 days to 15 healthy Korean people. After single and repeated administration of red ginsengextract, blood sample collection, measurement of blood pressure and body temperature, and routine laboratory test were conducted over 48-h test periods. RESULTS: Repeated administration of high-dose red ginseng for 15 days was well tolerated and did not produce significant changes in body temperature or blood pressure. The plasma concentrations of Rb1, Rb2, and Rc were stable and showed similar area under the plasma concentration-time curve (AUC) values after 15 days of repeated administration. Their AUC values after repeated administration of red ginseng extract for 15 days accumulated 4.5- to 6.7-fold compared with single-dose AUC. However, the plasma concentrations of Rd and compound K showed large interindividual variations but correlated well between AUC of Rd and compound K. Compound K did not accumulate after 15 days of repeated administration of red ginseng extract. CONCLUSION: A good correlation between the AUC values of Rd and compound K might be the result of intestinal biotransformation of Rb1, Rb2, and Rc to Rd and subsequently to compound K, rather than the intestinal permeability of these ginsenosides. A strategy to increase biotransformation or reduce metabolic intersubject variability may increase the plasma concentrations of Rd and compound K.

16.
Drug Des Devel Ther ; 13: 3127-3136, 2019.
Article in English | MEDLINE | ID: mdl-31564829

ABSTRACT

PURPOSE: S-1 is an oral fluoropyrimidine anticancer drug consisting of the 5-fluorouracil prodrug tegafur combined with gimeracil and oteracil. The purpose of this study was to evaluate the pharmacokinetic (PK), bioequivalence, and safety of a newly developed generic formulation of S-1 compared with the branded reference formulation, in Korean gastric cancer patients. METHODS: This was a single-center, randomized, open-label, single-dose, two-treatment, two-way crossover study. Eligible subjects were randomly assigned in a 1:1 ratio to receive the test formulation or reference formulation, followed by a one-week washout period and administration of the alternate formulation. Serial blood samples were collected at 0 hrs (predose), 0.25, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 24, 36, and 48 hrs after dosing in each period. The plasma concentrations of tegafur, 5-FU, gimeracil, and oteracil were analyzed using a validated liquid chromatography-tandem mass spectrometry method. The PK parameters were calculated using a non-compartmental method. RESULTS: In total, 29 subjects completed the study. All of the 90% confidence intervals (CIs) of the geometric mean ratios (GMRs) fell within the predetermined acceptance range. No serious adverse events were reported during the study. CONCLUSION: The new S-1 formulation met the Korean regulatory requirement for bioequivalence. Both S-1 formulations were well tolerated in all subjects.Clinical trial registry: https://cris.nih.go.kr CRIS KCT0003855.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Fluorouracil/pharmacokinetics , Oxonic Acid/pharmacokinetics , Pyridines/pharmacokinetics , Stomach Neoplasms/metabolism , Tegafur/pharmacokinetics , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/blood , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Chromatography, Liquid , Cross-Over Studies , Drug Compounding , Fluorouracil/administration & dosage , Fluorouracil/blood , Humans , Oxonic Acid/administration & dosage , Oxonic Acid/blood , Pyridines/administration & dosage , Pyridines/blood , Republic of Korea , Stomach Neoplasms/chemistry , Tandem Mass Spectrometry , Tegafur/administration & dosage , Tegafur/blood , Therapeutic Equivalency
17.
Molecules ; 24(14)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323835

ABSTRACT

We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography-tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5-200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic-pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans.


Subject(s)
Ginsenosides/blood , Ginsenosides/chemistry , Panax/chemistry , Plant Extracts/blood , Plant Extracts/chemistry , Ginsenosides/pharmacokinetics , Humans , Metabolic Networks and Pathways , Molecular Structure , Plant Extracts/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry
18.
Adv Ther ; 36(7): 1642-1656, 2019 07.
Article in English | MEDLINE | ID: mdl-31119689

ABSTRACT

INTRODUCTION: Amlodipine, valsartan, and rosuvastatin are among the medications widely coadministered for the treatment of hyperlipidemia accompanied by hypertension. The aim of this study was to investigate the possible pharmacokinetic drug-drug interactions between amlodipine, valsartan, and rosuvastatin in healthy Korean male volunteers. METHODS: In this phase 1, open-label, multiple-dose, two-part, two-period, fixed-sequence study, the enrolled subjects were randomized into two parts (A and B). In part A (n = 32), each subject received one fixed-dose combination (FDC) tablet of amlodipine/valsartan 10 mg/160 mg alone for 10 consecutive days in period I, and the same FDC for 10 days with concomitant 7-day administration of 20 mg rosuvastatin in period II. In part B (n = 25), each subject received rosuvastatin alone for 7 days in period I, and the FDC for 10 days with concomitant 7-day administration of rosuvastatin in period II. In both parts, there was a 12-day washout between periods. Serial blood samples were collected for up to 72 h for amlodipine and rosuvastatin, and for up to 48 h for valsartan after the last dose of each period. The plasma concentrations of amlodipine, valsartan, and rosuvastatin were determined by using liquid chromatography-tandem mass spectrometry. RESULTS: Fifty-seven subjects were enrolled; 30 and 25 subjects completed part A and part B, respectively. The geometric mean ratios and 90% confidence intervals for the maximum plasma concentration at steady state (Cmax,ss) and the area under the plasma concentration-time curve over the dosing interval at steady state (AUCτ,ss) were 0.9389 (0.9029-0.9763) and 0.9316 (0.8970-0.9675) for amlodipine, 0.7698 (0.6503-0.9114) and 0.7888 (0.6943-0.8962) for valsartan, and 0.9737 (0.8312-1.1407) and 0.9596 (0.8826-1.0433) for rosuvastatin, respectively. Of the 57 subjects enrolled in this study, 10 subjects experienced 13 adverse events (AEs); no severe or serious AEs were reported. CONCLUSION: When amlodipine, valsartan, and rosuvastatin were coadministered to healthy volunteers, the pharmacokinetic exposure to valsartan was decreased, but no change in exposure to amlodipine and rosuvastatin occurred. All treatments were well tolerated. CLINICAL TRIAL REGISTRATION: https://cris.nih.go.kr CRIS KCT0001660. FUNDING: KyungDong Pharmaceutical Corp. Ltd., Seoul, Republic of Korea.


Subject(s)
Amlodipine , Drug Interactions , Drug Monitoring/methods , Rosuvastatin Calcium , Valsartan , Adult , Amlodipine/administration & dosage , Amlodipine/pharmacokinetics , Cross-Over Studies , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Hypertension/drug therapy , Male , Middle Aged , Rosuvastatin Calcium/administration & dosage , Rosuvastatin Calcium/pharmacokinetics , Valsartan/administration & dosage , Valsartan/pharmacokinetics
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 157-163, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31054449

ABSTRACT

To improve early renal allograft function, it is important to develop a noninvasive diagnostic method for acute T cell-mediated rejection (TCMR). This study aims to explore potential noninvasive urinary biomarkers to screen for acute TCMR in kidney transplant recipients (KTRs) using untargeted metabolomic profiling. Urinary metabolites, collected from KTRs with stable graft function (STA) or acute TCMR episodes, were analyzed using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to discriminate differences in urinary metabolites between the two groups. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of potential urinary biomarkers. Statistical analysis revealed the differences in urinary metabolites between the two groups and indicated several statistically significant metabolic features suitable for potential biomarkers. By comparing the retention times and mass fragmentation patterns of the chemicals in metabolite databases, samples, and standards, six of these features were clearly identified. ROC curve analysis showed the best performance of the training set (area under the curve value, 0.926; sensitivity, 90.0%; specificity, 84.6%) using a panel of five potential biomarkers: guanidoacetic acid, methylimidazoleacetic acid, dopamine, 4-guanidinobutyric acid, and L-tryptophan. The diagnostic accuracy of this model was 62.5% for an independent test dataset. LC-MS-based untargeted metabolomic profiling is a promising method to discriminate between acute TCMR and STA groups. Our model, based on a panel of five potential biomarkers, needs to be further validated in larger scale studies.


Subject(s)
Graft Rejection/diagnosis , Graft Rejection/urine , Kidney Transplantation , Metabolome/physiology , Metabolomics/methods , Adult , Biomarkers/urine , Chromatography, High Pressure Liquid , Female , Graft Rejection/metabolism , Humans , Male , Middle Aged , Reproducibility of Results , T-Lymphocytes/metabolism , Tandem Mass Spectrometry
20.
J Cell Physiol ; 234(2): 1659-1670, 2019 02.
Article in English | MEDLINE | ID: mdl-30076703

ABSTRACT

Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor that plays an important role in various metabolic processes under physiological and pathophysiological conditions. Here, we report that ERRγ functions as a negative regulator in receptor activator of nuclear factor κΒ ligand (RANKL)-induced osteoclast differentiation. We observed that ERRγ was strongly expressed in osteoclast precursors, bone marrow-derived macrophages (BMMs) while its expression was significantly reduced by RANKL during osteoclastogenesis. Overexpression of ERRγ in BMMs suppressed the formation of multinucleated osteoclasts and attenuated the induction of c-Fos and nuclear factor of activated T cells c1, which are critical modulators in osteoclastogenesis. Similarly, the treatment of ERRγ agonists, N-(4-(diethylaminobenzylidenyl)-N'-(4-hydroxybenzoyl)-hydrazine (DY131) or GSK4716, also inhibited osteoclast generation and the expression of these key modulators. On the other hand, shRNA-mediated knockdown of ERRγ accelerated the formation of bone-resorbing cells and the expression of osteoclastogenic markers. Forced expression of ERRγ blocked RANKL-stimulated phosphorylation of the nuclear factor κB (NF-κB) inhibitor IκBα and suppressed NF-κB transcriptional activity induced by RANKL or the NF-κB subunit p65. Furthermore, by employing a pharmacological approach, we showed that the ERRγ agonist DY131 protected against inflammatory bone loss induced by lipopolysaccharide in vivo. Together, our findings reveal that ERRγ is a pivotal regulator in RANKL-mediated osteoclastogenesis and suggest that ERRγ may have potential as a therapeutic target for pathological bone loss.


Subject(s)
Macrophages/metabolism , Osteoclasts/metabolism , Osteogenesis , Osteoporosis/metabolism , Receptors, Estrogen/metabolism , Animals , Cell Differentiation , Disease Models, Animal , Estrogens/pharmacology , Gene Expression Regulation , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Osteoclasts/pathology , Osteogenesis/drug effects , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/prevention & control , RANK Ligand/pharmacology , RAW 264.7 Cells , Receptors, Estrogen/drug effects , Receptors, Estrogen/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...