Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 15(8)2023 08 15.
Article in English | MEDLINE | ID: mdl-37632083

ABSTRACT

There is no specific chemotherapy approved for the treatment of pathogenic arenaviruses that cause severe hemorrhagic fever (HF) in the population of endemic regions in America and Africa. The present study reports the effects of the natural flavonoid quercetin (QUER) on the infection of A549 and Vero cells with Junín virus (JUNV), agent of the Argentine HF. By infectivity assays, a very effective dose-dependent reduction of JUNV multiplication was shown by cell pretreatment at 2-6 h prior to the infection at non-cytotoxic concentrations, with 50% effective concentration values in the range of 6.1-7.5 µg/mL. QUER was also active by post-infection treatment but with minor efficacy. Mechanistic studies indicated that QUER mainly affected the early steps of virus adsorption and internalization in the multiplication cycle of JUNV. Treatment with QUER blocked the phosphorylation of Akt without changes in the total protein expression, detected by Western blot, and the consequent perturbation of the PI3K/Akt pathway was also associated with the fluorescence redistribution from membrane to cytoplasm of TfR1, the cell receptor recognized by JUNV. Then, it appears that the cellular antiviral state, induced by QUER treatment, leads to the prevention of JUNV entry into the cell.


Subject(s)
Arenaviridae Infections , Arenavirus , Chlorocebus aethiops , Animals , Quercetin/pharmacology , Flavonoids , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vero Cells
2.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014049

ABSTRACT

Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.

3.
J Pharm Pharmacol ; 73(3): 357-365, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33793877

ABSTRACT

OBJECTIVES: In the search of an effective antiviral formulation, the natural product curcumin (CUR) was encapsulated into poly(lactic-co-glycolic acid) nanoparticles, a non-toxic bioresorbable and biocompatible copolymer. The resulting CUR containing particles (PLGA-CUR NPs) were characterized and analysed for antiviral activity against Zika virus (ZIKV) infection. METHODS: The PLGA-CUR NPs were characterized by Fourier transform infrared, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy and thermogravimetric analysis and release profile. Cytotoxicity of PLGA-CUR and the antiviral activity against ZIKV were determined in Vero cells. The effect of PLGA-CUR NPs on viral RNA synthesis and protein expression was analysed by RT-qPCR and immunofluorescence staining, respectively. KEY FINDINGS: The PLGA-CUR NPs showed an appropriate in vitro drug release profile. Our studies of the antiviral activity of PLGA-CUR NPs and CUR against ZIKV by virus yield reduction as well as viral RNA synthesis and protein expression have shown that PLGA-CUR formulation is more effective than free CUR to inhibit ZIKV infection of Vero cells. CONCLUSIONS: Our results demonstrate for the first time the antiviral activity against ZIKV of PLGA nanoparticles charged with CUR, suggesting that PLGA-CUR NPs are promising candidates for a drug formulation against human pathogenic flaviviruses.


Subject(s)
Antiviral Agents/pharmacology , Curcumin/pharmacology , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Animals , Antiviral Agents/administration & dosage , Chlorocebus aethiops , Curcumin/administration & dosage , Drug Carriers/chemistry , Drug Liberation , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Vero Cells
4.
Eur J Med Chem ; 46(1): 259-64, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21115214

ABSTRACT

Herein, we describe the syntheses of 3,5-disubstituted imidazo[2,1-b]thiazole. The cyclization step was performed in two different conditions by using either thermal or microwave heating. Comparing the results of both methodologies, we found that the microwave assistance is an improved alternative to obtain this family of heterocyclic compound. Compounds were first evaluated for cytotoxicity in Vero cells by MTT method and then, the antiviral activity was assayed by a virus yield inhibition assay in the range of concentrations lower than the corresponding CC(50), using JUNV strain IV4454 as the model system. The most active compounds (3 and 4), showed a level of antiviral activity against JUNV in monkey Vero cells better than the reference substance ribavirin. Then, they are promising lead compound for further analysis and characterization to establish their therapeutic potential against hemorrhagic fever viruses.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Carbohydrates/chemistry , Hemorrhagic Fever, American/virology , Junin virus/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/toxicity , Chlorocebus aethiops , Inhibitory Concentration 50 , Junin virus/physiology , Thiazoles/chemical synthesis , Thiazoles/toxicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL