Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8243, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092724

ABSTRACT

Information exchange between two distant parties, where information is shared without physically transporting it, is a crucial resource in future quantum networks. Doing so with high-dimensional states offers the promise of higher information capacity and improved resilience to noise, but progress to date has been limited. Here we demonstrate how a nonlinear parametric process allows for arbitrary high-dimensional state projections in the spatial degree of freedom, where a strong coherent field enhances the probability of the process. This allows us to experimentally realise quantum transport of high-dimensional spatial information facilitated by a quantum channel with a single entangled pair and a nonlinear spatial mode detector. Using sum frequency generation we upconvert one of the photons from an entangled pair resulting in high-dimensional spatial information transported to the other. We realise a d = 15 quantum channel for arbitrary photonic spatial modes which we demonstrate by faithfully transferring information encoded into orbital angular momentum, Hermite-Gaussian and arbitrary spatial mode superpositions, without requiring knowledge of the state to be sent. Our demonstration merges the nascent fields of nonlinear control of structured light with quantum processes, offering a new approach to harnessing high-dimensional quantum states, and may be extended to other degrees of freedom too.

2.
Sci Rep ; 11(1): 8561, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879802

ABSTRACT

Quantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another (non-degenerate ghost imaging), but suffers from slow image reconstruction due to sparsity and probabilistic arrival positions of photons. Here, we propose a two-step deep learning approach to establish an optimal early stopping point based on object recognition, even for sparsely filled images. In step one we enhance the reconstructed image after every measurement by a deep convolutional auto-encoder, followed by step two in which a classifier is used to recognise the image. We test this approach on a non-degenerate ghost imaging setup while varying physical parameters such as the mask type and resolution. We achieved a fivefold decrease in image acquisition time at a recognition confidence of [Formula: see text]. The significant reduction in experimental running time is an important step towards real-time ghost imaging, as well as object recognition with few photons, e.g., in the detection of light sensitive structures.

3.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C146-C160, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175744

ABSTRACT

A quantitative analysis of optical fields is essential, particularly when the light is structured in some desired manner, or when there is perhaps an undesired structure that must be corrected for. A ubiquitous procedure in the optical community is that of optical mode projections-a modal analysis of light-for the unveiling of amplitude and phase information of a light field. When correctly performed, all the salient features of the field can be deduced with high fidelity, including its orbital angular momentum, vectorial properties, wavefront, and Poynting vector. Here, we present a practical tutorial on how to perform an efficient and effective optical modal decomposition, with emphasis on holographic approaches using spatial light modulators, highlighting the care required at each step of the process.

4.
Sci Rep ; 10(1): 2281, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042013

ABSTRACT

Single-pixel imaging uses a time-varying transmission mask placed in the illumination to achieve imaging without the use of detector arrays. While most research in this field uses sophisticated masks implemented using spatial light modulators, such methods are not available at all lengthscales and wavelengths of illumination. Here we show that alternatively a sequence of projected caustic intensity patterns can be used as the basis for the single-pixel imaging of objects. Caustics can be formed using slowly varying random phase masks, such as for example the surface of a swimming pool, which potentially makes using caustics an option at a range of lengthscales and wavelengths.

5.
PLoS One ; 14(4): e0214891, 2019.
Article in English | MEDLINE | ID: mdl-30964901

ABSTRACT

In a Quantum Walk (QW) the "walker" follows all possible paths at once through the principle of quantum superposition, differentiating itself from classical random walks where one random path is taken at a time. This facilitates the searching of problem solution spaces faster than with classical random walks, and holds promise for advances in dynamical quantum simulation, biological process modelling and quantum computation. Here we employ a versatile and scalable resonator configuration to realise quantum walks with bright classical light. We experimentally demonstrate the versatility of our approach by implementing a variety of QWs, all with the same experimental platform, while the use of a resonator allows for an arbitrary number of steps without scaling the number of optics. This paves the way for future QW implementations with spatial modes of light in free-space that are both versatile and scalable.


Subject(s)
Quantum Theory , Models, Theoretical , Research Design
6.
Opt Lett ; 44(3): 586-589, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30702685

ABSTRACT

The efficient creation and detection of spatial modes of light has become topical of late, driven by the need to increase photon bit-rates in classical and quantum communications. Such mode creation/detection is traditionally achieved with tools based on linear optics. Here we put forward a new spatial mode detection technique based on the nonlinear optical process of sum-frequency generation. We outline the concept theoretically and demonstrate it experimentally with intense laser beams carrying orbital angular momentum and Hermite-Gaussian modes. Finally, we show that the method can be used to transfer an image from the infrared band to the visible, which implies the efficient conversion of many spatial modes.

7.
Sci Rep ; 8(1): 10248, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980751

ABSTRACT

The design and fabrication of a compact diffractive optical element is presented for the sorting of beams carrying orbital angular momentum (OAM) of light. The sorter combines a conformal mapping transformation with an optical fan-out, performing demultiplexing with unprecedented levels of miniaturization and OAM resolution. Moreover, an innovative configuration is proposed which simplifies alignment procedures and further improves the compactness of the optical device. Samples have been fabricated in the form of phase-only diffractive optics with high-resolution electron-beam lithography (EBL) over a glass substrate. A soft-lithography process has been optimized for fast and cheap replica production of the EBL masters. Optical tests with OAM beams confirm the designed performance, showing excellent efficiency and low cross-talk, with high fidelity even with multiplexed input beams. This work paves the way for practical OAM multiplexing and demultiplexing devices for use in classical and quantum communication.

8.
Appl Opt ; 55(28): 7830-7835, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27828012

ABSTRACT

Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile is neglected in this generation approach. Here, we show that a consequence of this is that vortex beams carry very little energy in the desired zeroth radial order, as little as only a few percent of the incident power. We demonstrate this experimentally and illustrate how to overcome the problem by complex amplitude modulation of the incident field.

SELECTION OF CITATIONS
SEARCH DETAIL
...