Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 16(1): 2308049, 2024.
Article in English | MEDLINE | ID: mdl-38299318

ABSTRACT

Infectious diarrheal diseases are the third leading cause of mortality in young children, many of which are driven by Gram-negative bacterial pathogens. To establish successful host infections these pathogens employ a plethora of virulence factors necessary to compete with the resident microbiota, and evade and subvert the host defenses. The type II secretion system (T2SS) is one such conserved molecular machine that allows for the delivery of effector proteins into the extracellular milieu. To explore the role of the T2SS during natural host infection, we used Citrobacter rodentium, a murine enteric pathogen, as a model of human intestinal disease caused by pathogenic Escherichia coli such as Enteropathogenic and Enterohemorrhagic E. coli (EPEC and EHEC). In this study, we determined that the C. rodentium genome encodes one T2SS and 22 potential T2SS-secreted protein effectors, as predicted via sequence homology. We demonstrated that this system was functional in vitro, identifying a role in intestinal mucin degradation allowing for its utilization as a carbon source, and promoting C. rodentium attachment to a mucus-producing colon cell line. During host infection, loss of the T2SS or associated effectors led to a significant colonization defect and lack of systemic spread. In mice susceptible to lethal infection, T2SS-deficient C. rodentium was strongly attenuated, resulting in reduced morbidity and mortality in infected hosts. Together these data highlight the important role of the T2SS and its effector repertoire during C. rodentium pathogenesis, aiding in successful host mucosal colonization.


Subject(s)
Enterobacteriaceae Infections , Enterohemorrhagic Escherichia coli , Gastrointestinal Microbiome , Type II Secretion Systems , Child , Humans , Animals , Mice , Child, Preschool , Citrobacter rodentium/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Enterobacteriaceae Infections/microbiology
2.
Sci Rep ; 13(1): 19155, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932328

ABSTRACT

The gold-standard treatment for Parkinson's disease is levodopa (L-DOPA), which is taken orally and absorbed intestinally. L-DOPA must reach the brain intact to exert its clinical effect; peripheral metabolism by host and microbial enzymes is a clinical management issue. The gut microbiota is altered in PD, with one consistent and unexplained observation being an increase in Bifidobacterium abundance among patients. Recently, certain Bifidobacterium species were shown to have the ability to metabolize L-tyrosine, an L-DOPA structural analog. Using both clinical cohort data and in vitro experimentation, we investigated the potential for commensal Bifidobacteria to metabolize this drug. In PD patients, Bifidobacterium abundance was positively correlated with L-DOPA dose and negatively with serum tyrosine concentration. In vitro experiments revealed that certain species, including B. bifidum, B. breve, and B. longum, were able to metabolize this drug via deamination followed by reduction to the compound 3,4-dihydroxyphenyl lactic acid (DHPLA) using existing tyrosine-metabolising genes. DHPLA appears to be a waste product generated during regeneration of NAD +. This metabolism occurs at low levels in rich medium, but is significantly upregulated in nutrient-limited minimal medium. Discovery of this novel metabolism of L-DOPA to DHPLA by a common commensal may help inform medication management in PD.


Subject(s)
Bifidobacterium bifidum , Parkinson Disease , Humans , Levodopa , Bifidobacterium/metabolism , Bifidobacterium bifidum/metabolism
3.
Article in English | MEDLINE | ID: mdl-33139287

ABSTRACT

The bacterial cell wall plays a key role in viability and is an important drug target. The cell wall is made of elongated polymers that are cross-linked to one another to form a load-bearing mesh. An alternative cell wall cross-linking mechanism used by the l,d-transpeptidase YcbB has been implicated in the stress-regulated roles of ß-lactam resistance, outer membrane defect rescue, and typhoid toxin release. The role for this stress-linked cross-linking in the context of a host infection was unclear. Here, we resolve the crystallographic structures of both Salmonella Typhi YcbB and Citrobacter rodentium YcbB acylated with ertapenem that delineate the conserved structural characteristics of YcbB. In parallel, we show that the general involvement of YcbB in peptidoglycan reinforcement under conditions of bacterial outer envelope stress does not play a significant role in acute infections of mice by C. rodentium and S Typhimurium. Cumulatively, in this work we provide a foundation for the development of novel YcbB-specific antibacterial therapeutics to assist in treatment of increasingly drug-resistant S Typhi infections.


Subject(s)
Peptidyl Transferases , Typhoid Fever , Animals , Citrobacter rodentium , Mice , Salmonella typhi/genetics , Salmonella typhimurium/genetics , Typhoid Fever/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...