Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Biochem Biophys Res Commun ; 694: 149404, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38147698

ABSTRACT

At the molecular level, aging is often accompanied by dysfunction of stress-induced membrane-less organelles (MLOs) and changes in their physical state (or material properties). In this work, we analyzed the proteins included in the proteome of stress granules (SGs) and P-bodies for their tendency to transform the physical state of these MLOs. Particular attention was paid to the proteins whose gene expression changes during replicative aging. It was shown that the proteome of the studied MLOs consists of intrinsically disordered proteins, 30-40% of which are potentially capable of liquid-liquid phase separation (LLPS). Proteins whose gene expression changes during the transition of human cells to a senescent state make up about 20% of the studied proteomes. There is a statistically significant increase in the number of positively charged proteins in both datasets studied compared to the complete proteomes of these organelles. An increase in the relative content of DNA-, but not RNA-binding proteins, was also found in the SG dataset with senescence-related processes. Among SGs proteins potentially involved in senescent processes, there is an increase in the abundance of potentially amyloidogenic proteins compared to the whole proteome. Proteins common to SGs and P-bodies, potentially involved in processes associated with senescence, form clusters of interacting proteins. The largest cluster is represented by RNA-binding proteins involved in RNA processing and translation regulation. These data indicate that SG proteins, but not proteins of P-bodies, are more likely to transform the physical state of MLOs. Furthermore, these MLOs can participate in processes associated with aging in a coordinated manner.


Subject(s)
Processing Bodies , Proteome , Humans , Proteome/metabolism , Stress Granules , Organelles/metabolism , Computational Biology , Cellular Senescence
2.
Opt Lett ; 48(11): 2889-2892, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262236

ABSTRACT

The effect of optical rectification (OR) in the terahertz range (THz rectification, TR) is experimentally demonstrated. The effect consists of generating a DC voltage on the faces of a ferroelectric triglycine sulfate (TGS) single crystal under the action of pulsed radiation with a frequency of 1.57 and 1.96 THz and an electric field strength per pulse of 1.3 and 1.5 MV/m, respectively. The FLARE FELIX free-electron laser system (Radboud University, The Netherlands) was used as a THz radiation source. The TR effect makes it possible to directly determine the nonlinear susceptibilities of media (including those under conditions of strong absorption) without any reference or optical channel calibration and also without the need of Fourier transform.

3.
J Hepatocell Carcinoma ; 10: 291-301, 2023.
Article in English | MEDLINE | ID: mdl-36860804

ABSTRACT

Purpose: We tested a recently developed short peptide radioligand for PET imaging of hepatocellular carcinoma (HCC) by targeting an oncoprotein, extra-domain B fibronectin (EDB-FN) in the tumor microenvironment. Methods: The radioligand consists of a small linear peptide ZD2 with 68Ga-NOTA chelator, and specifically binds to EDB-FN. PET images were acquired dynamically for 1 hour after intravenously (i.v.) injecting 37 MBq (1.0 mCi) of the radioligand into the woodchuck model of naturally occurring HCC. Woodchuck HCC originated from chronic viral hepatitis infection, which recapitulates the corresponding human primary liver cancer. The animals were euthanized post-imaging for tissue collection and validation. Results: For ZD2 avid liver tumors, the radioligand accumulation plateaued a few minutes after injection, while the liver background uptake stabilized 20 min post-injection. The status of EDB-FN in woodchuck HCC was confirmed by histology and validated by PCR and western blocking. Conclusion: We have showed the viability of using the ZD2 short peptide radioligand targeting EDB-FN in liver tumor tissue for PET imaging of HCC, which can potentially impact the clinical care for HCC patients.

4.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012368

ABSTRACT

The NOS1AP gene encodes a cytosolic protein that binds to the signaling cascade component neuronal nitric oxide synthase (nNOS). It is associated with many different disorders, such as schizophrenia, post-traumatic stress disorder, autism, cardiovascular disorders, and breast cancer. The NOS1AP (also known as CAPON) protein mediates signaling within a complex which includes the NMDA receptor, PSD-95, and nNOS. This adapter protein is involved in neuronal nitric oxide (NO) synthesis regulation via its association with nNOS (NOS1). Our bioinformatics analysis revealed NOS1AP as an aggregation-prone protein, interacting with α-synuclein. Further investigation showed that NOS1AP forms detergent-resistant non-amyloid aggregates when overproduced. Overexpression of NOS1AP was found in rat models for nervous system injury as well as in schizophrenia patients. Thus, we can assume for the first time that the molecular mechanisms underlying these disorders include misfolding and aggregation of NOS1AP. We show that NOS1AP interacts with α-synuclein, allowing us to suggest that this protein may be implicated in the development of synucleinopathies and that its aggregation may explain the relationship between Parkinson's disease and schizophrenia.


Subject(s)
Adaptor Proteins, Signal Transducing , Saccharomyces cerevisiae , alpha-Synuclein , Adaptor Proteins, Signal Transducing/metabolism , Animals , Neurons/metabolism , Nitric Oxide Synthase Type I , Rats , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Synucleinopathies , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
Gastro Hep Adv ; 1(4): 631-639, 2022.
Article in English | MEDLINE | ID: mdl-35844243

ABSTRACT

BACKGROUND AND AIMS: Radiolabeled short peptide ligands targeting prostate-specific membrane antigen (PSMA) were developed initially for imaging and treatment of prostate cancers. While many nonprostate solid tumors including hepatocellular carcinoma (HCC) express little PSMA, their neovasculature expresses a high level of PSMA, which is avid for Gallium-68-labeled PSMA-targeting radio-ligand (68Ga-PSMA-11) for positron emission tomography (PET). However, the lack of a spontaneous animal model of tumor-associated vascular PSMA overexpression has hindered the development and assessment of PSMA-targeting radioligands for imaging and therapy of the nonprostatic cancers. We identified detectable indigenous PSMA expression on tumor neovascular endothelia in a naturally occurring woodchuck model of HCC. METHODS: Molecular docking was performed with 3 bait PSMA ligands and compared between human and woodchuck PSMA. Initially, PET images were acquired dynamically after intravenously injecting 37 MBq (1.0 mCi) of 68Ga-PSMA-11 into woodchuck models of HCC. Subsequently, 10-minute static PET scans were conducted for other animals 1-hour after injection due to HCC and liver background uptake stabilization at 30-45 minutes after injection. Liver tissue samples were harvested after imaging, fresh-frozen for quantitative reverse transcription polymerase chain reaction and western blot for validation, or fixed for histology for correlation. RESULTS: Our preclinical studies confirmed the initial clinical findings of 68Ga-PSMA-11 uptake in HCC. The agents (ligands and antibodies) developed against human PSMA were found to be reactive against the woodchuck PSMA. CONCLUSION: This animal model offers a unique opportunity for investigating the biogenesis of tumor-associated vascular PSMA, its functional role(s), and potentials for future treatment strategies targeting tumor vascular PSMA using already developed PSMA-targeting agents.

6.
Biomedicines ; 10(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35740417

ABSTRACT

Glucose and lipid metabolism are crucial functional systems in eukaryotes. A large number of experimental studies both in animal models and humans have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. Previously, human lncRNA DEANR1/linc00261 was described as a tumor suppressor that regulates a variety of biological processes such as cell proliferation, apoptosis, glucose metabolism and tumorigenesis. Here we report that murine lncRNA Falcor/LL35, a proposed functional analog of human DEANR1/linc00261, is predominantly expressed in murine normal hepatocytes and downregulated in HCC and after partial hepatectomy. The application of high-throughput approaches such as RNA-seq, LC-MS proteomics, lipidomics and metabolomics analysis allowed changes to be found in the transcriptome, proteome, lipidome and metabolome of hepatocytes after LL35 depletion. We revealed that LL35 is involved in the regulation of glycolysis and lipid biosynthesis in vitro and in vivo. Moreover, LL35 affects Notch and NF-κB signaling pathways in normal hepatocytes. All observed changes result in the decrease in the proliferation and migration of hepatocytes. We demonstrated similar phenotype changes between murine LL35 and human linc00261 depletion in vitro and in vivo that opens the opportunity to translate results for LL35 from a liver murine model to possible functions of human lncRNA linc00261.

7.
Neuropharmacology ; 215: 109167, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35750238

ABSTRACT

Histaminergic (HA) neurons are located in the tuberomamillary nucleus (TMN) of the posterior hypothalamus, from where they project throughout the whole brain to control wakefulness. We examined the effects of Nα-oleoylhistamine (OLHA), a non-enzymatic condensation product of oleic acid (OLA) and histamine, on activity of mouse HA neurons in brain slices. OLHA bidirectionally modulated the firing of HA neurons. At 10 nM OLHA inhibited or had no action, whereas at 1 µM it evoked excitatory and inhibitory responses. Inhibition was not seen in presence of the histamine receptor H3 (H3R) antagonist clobenpropit and in calcium-free medium. Pre-incubation with a histamine-reuptake blocker prevented the decrease in firing by OLHA. OLHA-evoked increase in firing (EC50 ∼44 nM) was insensitive to blockers of cannabinoid 1 and 2 receptors and of the capsaicin receptor, but was significantly impaired by the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) antagonist MK886, which suppressed also the rise in intracellular calcium level caused by OLHA. The OLHA-evoked excitation was mimicked by synthetic PPAR-alpha agonists (gemfibrozil and GW7647) and was abolished by the PKA inhibitor H-89. The H3R affinity (Ki) for histamine, measured in HEK293 cells with stable expression of human H3R, was higher than for OLHA (Ki: 42 vs 310 nM, respectively). Expression of PPAR-alpha was not different between TMN regions of males and females, responses to OLHA did not differ. Molecular modelling of PPAR-alpha bound to either OLHA or OEA showed similar binding energies. These findings shed light on a novel biotransformation product of histamine which may play a role in health and disease.


Subject(s)
Histamine , Receptors, Histamine H3 , Animals , Brain/metabolism , Female , HEK293 Cells , Histamine/metabolism , Humans , Male , Mice , Neurons , Peroxisome Proliferator-Activated Receptors/metabolism , Receptors, Histamine H3/metabolism
8.
Chem Commun (Camb) ; 58(27): 4388-4391, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35297916

ABSTRACT

Due to oxidative instability, arylboronic acids are not compatible with the solid-phase synthesis of nucleic acids. We solved this problem and, based on these findings, developed siRNA prodrugs activated in the presence of reactive oxygen species (ROS) in vivo. These prodrugs can be used for specific targeting of ROS-rich cancer cells.


Subject(s)
Prodrugs , Oxidation-Reduction , Prodrugs/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism
9.
Nucleic Acid Ther ; 32(3): 123-138, 2022 06.
Article in English | MEDLINE | ID: mdl-35166605

ABSTRACT

Dysregulation of RNA splicing causes many diseases and disorders. Several therapeutic approaches have been developed to correct aberrant alternative splicing events for the treatment of cancers and hereditary diseases, including gene therapy and redirecting splicing, using small molecules or splice switching oligonucleotides (SSO). Significant advances in the chemistry and pharmacology of nucleic acid have led to the development of clinically approved SSO drugs for the treatment of spinal muscular dystrophy and Duchenne muscular dystrophy (DMD). In this review, we discuss the mechanisms of SSO action with emphasis on "less common" approaches to modulate alternative splicing, including bipartite and bifunctional SSO, oligonucleotide decoys for splice factors and SSO-mediated mRNA degradation via AS-NMD and NGD pathways. We briefly discuss the current progress and future perspectives of SSO therapy for rare and ultrarare diseases.


Subject(s)
Muscular Dystrophy, Duchenne , Oligonucleotides , Alternative Splicing/genetics , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/genetics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/therapeutic use , RNA Splicing/genetics
10.
J Innov Card Rhythm Manag ; 12(10): 4715-4719, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34712506

ABSTRACT

A case of successful treatment for syncopal episodes caused by intermittent atrioventricular block in a patient with paroxysmal atrial fibrillation/atrial flutter using cardioneuroablation is presented.

11.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203429

ABSTRACT

DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo-deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60-65%) showed discordant results in vitro and in vivo-similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.


Subject(s)
DEAD-box RNA Helicases/metabolism , Hepatocytes/metabolism , Animals , Cell Survival/genetics , Cell Survival/physiology , DEAD-box RNA Helicases/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Liver/metabolism , Mice , Mice, Inbred BALB C , Transcriptome/genetics
12.
Nucleic Acid Ther ; 31(3): 190-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33989066

ABSTRACT

A series of 2'-deoxy and novel 2'-O-methyl and 2'-O-(2-methoxyethyl) (2'-MOE) oligonucleotides with internucleotide methanesulfonyl (mesyl, µ) or 1-butanesulfonyl (busyl, ß) phosphoramidate groups has been synthesized for evaluation as potential splice-switching oligonucleotides. Evaluation of their splice-switching activity in spinal muscular atrophy patient-derived fibroblasts revealed no significant difference in splice-switching efficacy between 2'-MOE mesyl oligonucleotide and the corresponding phosphorothioate (nusinersen). Yet, a survival study with model neonatal mice has shown the antisense 2'-MOE mesyl oligonucleotide to be inferior to nusinersen at the highest dose of 40 mg/kg. A reason for their lower activity in vivo as ascertained by cellular uptake study by fluorescent confocal microscopy in HEK293 cell line could possibly be ascribed to compromised endosomal release and/or nuclear uptake of the 2'-OMe or 2'-MOE µ- and ß-oligonucleotides compared to their phosphorothioate analog.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides , Amides , Animals , HEK293 Cells , Humans , Mice , Oligonucleotides/genetics , Oligonucleotides, Antisense/genetics , Phosphoric Acids
13.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804185

ABSTRACT

The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.


Subject(s)
Cell Cycle/genetics , DNA Replication/genetics , RNA Helicases/genetics , Cell Division/genetics , Cyclin-Dependent Kinases/genetics , DEAD-box RNA Helicases/genetics , Eukaryotic Initiation Factor-4A/genetics , Humans
14.
J Adolesc ; 88: 84-96, 2021 04.
Article in English | MEDLINE | ID: mdl-33667792

ABSTRACT

INTRODUCTION: Women and men experience sleep differently and the difference in intrinsic desire for sleep might underlie some of the observed male-female differences. The objective of this cross-sectional questionnaire study of university students was to determine male-female differences in self-reported sleepiness and sleep-wake patterns. METHODS: Five questionnaires were completed by 1650 students at four Russian universities. RESULTS: Compared to male students, female students reported a lower subjective sleep quality score, had a higher morning sleepability score and lower nighttime and daytime wakeability scores. They more often reported excessive daytime sleepiness and expected to be sleepier at any time of the day with the largest male-female difference around the times of sleep onset and offset. On free days, they reported a longer sleep duration and an earlier sleep onset. Free-weekday difference was larger for sleep duration and smaller for sleep onset. Such male-female differences showed similarity to the differences observed in university and high school students from different countries around the globe. There was no significant male-female difference in weekly averaged sleep duration, weekday sleep duration, hours slept, midpoint of sleep on free days, free-weekday difference in sleep offset, social jetlag, and morningness-eveningness score. Therefore, when studies rely on these self-reports, the most salient male-female differences might not be immediately evident. CONCLUSIONS: It seems that the intrinsic desire for longer sleep duration might contribute to a higher susceptibility of female students to weekday sleep loss. Among these students, negative effects of reduced sleep duration might be more common and more detrimental.


Subject(s)
Sleepiness , Universities , Circadian Rhythm , Cross-Sectional Studies , Female , Humans , Male , Sleep , Students , Surveys and Questionnaires
15.
Colloids Surf B Biointerfaces ; 200: 111576, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33508660

ABSTRACT

Development of multimodal systems for therapy and diagnosis of neoplastic diseases is an unmet need in oncology. The possibility of simultaneous diagnostics, monitoring, and therapy of various diseases allows expanding the applicability of modern systems for drug delivery. We have developed hybrid particles based on biocompatible polymers containing magnetic nanoparticles (MNPs), photoacoustic (MNPs), fluorescent (Cy5 or Cy7 dyes), and therapeutic components (doxorubicin). To achieve high loading efficiency of MNP and Dox to nanostructured carriers, we utilized a novel freezing-induced loading technique. To reduce the systemic toxicity of antitumor drugs and increase their therapeutic efficacy, we can use targeted delivery followed by the remote control of drug release using high intensity-focused ultrasound (HIFU). Loading of MNPs allowed performing magnetic targeting of the carriers and enhanced optoacoustic signal after controlled destruction of the shell and release of therapeutics as well as MRI imaging. The raster scanning optoacoustic mesoscopy (PA, RSOM), MRI, and fluorescent tomography (FT) confirmed the ultrasound-induced release of doxorubicin from capsules: in vitro (in tubes and pieces of meat) and in vivo (after delivery to the liver). Disruption of capsules results in a significant increase of doxorubicin and Cy7 fluorescence initially quenched by magnetite nanoparticles that can be used for real-time monitoring of drug release in vivo. In addition, we explicitly studied cytotoxicity, intracellular localization, and biodistribution of these particles. Elaborated drug delivery carriers have a good perspective for simultaneous imaging and focal therapy of different cancer types, including liver cancer.


Subject(s)
Nanoparticles , Neoplasms , Doxorubicin/pharmacology , Drug Carriers , Drug Delivery Systems , Drug Liberation , Humans , Multimodal Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Tissue Distribution
16.
Am J Nucl Med Mol Imaging ; 10(5): 212-225, 2020.
Article in English | MEDLINE | ID: mdl-33224617

ABSTRACT

High liver uptake presents a problem for 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) as a radiotracer for imaging cellular proliferation in the liver with positron emission tomography (PET). This investigation re-visited some issues related to the high liver background uptake of [18F]FLT with an animal model of woodchucks. Several enzymes involved in the hepatic catabolism of FLT, thymidine phosphorylase (TP, TYMP), uridine 5'-diphospho-glucuronosyl-transferases (UDP-GTs, short for UGTs), and ß-glucuronidase (GUSB), their homology as well as hepatic expression between the human and the woodchuck was examined. Inhibitors of these enzymes, TP inhibitor (TPI) tipiracil hydrochloride, UGT inhibitor probenecid, ß-glucuronidase inhibitor L-aspartate, were administered to the animals at human equivalent doses either intravenously (i.v.) and orally before the injection of tracer-dose [18F]FLT for PET imaging to examine any changes in liver uptake. Liver tissue samples were harvested from the animals after PET imaging and used to perform polymerase chain reaction (PCR) for TP expression or assays for enzymatic activities of TP and ß-glucuronidase. Non-radiolabeled (cold) FLT was also applied for enzyme saturation. Animals administered with TPI displayed lower radioactivity in the liver in comparison with the baseline scan. The application of probenecid did not change [18F]FLT liver uptake even though it reduced renal uptake. L-aspartate reduced the liver background uptake of [18F]FLT slightly. The application of cold FLT reduced overall uptake of [18F]FLT including the liver background. Therefore, the combined application of cold FLT and [18F]FLT merits further clinical investigation for reducing liver background uptake of [18F]FLT.

17.
Light Sci Appl ; 9: 173, 2020.
Article in English | MEDLINE | ID: mdl-33082942

ABSTRACT

The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS). The operating principle relies on detecting changes in the transmission of a hollow-core microstructured optical fibre when a bioanalyte is streamed through it via liquid cells. IMOS offers a unique opportunity to measure the refractive index at 42 wavelengths, with a sensitivity up to ~3000 nm per refractive index unit (RIU) and a figure of merit reaching 99 RIU-1 in the visible and near-infra-red spectral ranges. We apply this technique to determine the concentration and refractive index dispersion for bovine serum albumin and show that the accuracy meets clinical needs.

19.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764370

ABSTRACT

The coupling of alternative splicing with the nonsense-mediated decay (NMD) pathway maintains quality control of the transcriptome in eukaryotes by eliminating transcripts with premature termination codons (PTC) and fine-tunes gene expression. Long noncoding RNA (lncRNA) can regulate multiple cellular processes, including alternative splicing. Previously, murine Morrbid (myeloid RNA repressor of Bcl2l11 induced death) lncRNA was described as a locus-specific controller of the lifespan of short-living myeloid cells via transcription regulation of the apoptosis-related Bcl2l11 protein. Here, we report that murine Morrbid lncRNA in hepatocytes participates in the regulation of proto-oncogene NRAS (neuroblastoma RAS viral oncogene homolog) splicing, including the formation of the isoform with PTC. We observed a significant increase of the NRAS isoform with PTC in hepatocytes with depleted Morrbid lncRNA. We demonstrated that the NRAS isoform with PTC is degraded via the NMD pathway. This transcript is presented almost only in the nucleus and has a half-life ~four times lower than other NRAS transcripts. Additionally, in UPF1 knockdown hepatocytes (the key NMD factor), we observed a significant increase of the NRAS isoform with PTC. By a modified capture hybridization (CHART) analysis of the protein targets, we uncovered interactions of Morrbid lncRNA with the SFPQ (splicing factor proline and glutamine rich)-NONO (non-POU domain-containing octamer-binding protein) splicing complex. Finally, we propose the regulation mechanism of NRAS splicing in murine hepatocytes by alternative splicing coupled with the NMD pathway with the input of Morrbid lncRNA.


Subject(s)
Alternative Splicing/genetics , DNA-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/genetics , PTB-Associated Splicing Factor/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Animals , Codon, Nonsense/genetics , Gene Expression Regulation, Developmental , Hepatocytes/metabolism , Mice , Multiprotein Complexes/genetics , Nonsense Mediated mRNA Decay/genetics , Transcriptome/genetics
20.
Animals (Basel) ; 10(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751575

ABSTRACT

To examine the genetic diversity and population structure of domestic reindeer, using the BovineHD BeadChip, we genotyped reindeer individuals belonging to the Nenets breed of the five main breeding regions, the Even breed of the Republic of Sakha, the Evenk breed of the Krasnoyarsk and Yakutia regions, and the Chukotka breed of the Chukotka region and its within-breed ecotype, namely, the Chukotka-Khargin, which is bred in Yakutia. The Chukotka reindeer was shown to have the lowest genetic diversity in terms of the allelic richness and heterozygosity indicators. The principal component analysis (PCA) results are consistent with the neighbor-net tree topology, dividing the reindeer into groups according to their habitat location and origin of the breed. Admixture analysis indicated a genetic structuring of two groups of Chukotka origin, the Even breed and most of the geographical groups of the Nenets breed, with the exception of the Murmansk reindeer, the gene pool of which was comprised of the Nenets and apparently the native Sami reindeer. The presence of a genetic component of the Nenets breed in some reindeer inhabiting the Krasnoyarsk region was detected. Our results provide a deeper insight into the current intra-breeding reindeer genetic diversity, which is an important requirement for future reindeer herding strategies and for animal adaptation to environmental changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...