Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(2): 706-713, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141776

ABSTRACT

BACKGROUND: Elevated blood pressure (BP) is a major contributor to cardiovascular disease in womens; diet and sedentary time (ST) are modifiable lifestyle factors thought to influence BP. OBJECTIVES: The aim of this study was to examine 2 diet-quality measures and ST in relation to BP among parous womens. METHODS: This cross-sectional analysis uses data from 677 womens (age 25-55 y) enrolled in the Pregnancy Outcomes and Community Health (POUCH) Study and followed up in the POUCHmoms study 7-15 y after delivery (2011 and 2014). Follow-up measures included a food-frequency questionnaire (FFQ), self-report of ST (occupational and leisure), and systolic and diastolic blood pressure (SBP and DBP, respectively). The FFQ was used to calculate 2 diet-quality measures, Alternative Healthy Eating Index-2010 (AHEI) and Dietary Approaches to Stop Hypertension (DASH). Total ST h/wk was dichotomized at the median and labeled "low" or "high." In weighted unadjusted and adjusted regression models, BP was assessed in relation to diet scores (linear and threshold associations) and combinations of dichotomized diet-quality scores ("poor" = lowest quartile compared with "not poor" = upper 3 quartiles) and ST. RESULTS: Higher mean SBP and DBP occurred mainly in women with a '"poor" diet-quality score (AHEI and DASH). Among womens with a "poor"-quality diet (on the basis of the AHEI score) and "high" ST, (N = 93) adjusted mean SBP and DBP were 4.5 mmHg and 4.4 mmHg higher, respectively, than that of the counterparts who did not have a poor-quality diet and had "low" ST (N = 275). Results were similar in analyses using the DASH diet score. CONCLUSIONS: Women with poor-quality diets and more ST may need closer BP monitoring. Even modest improvements in womens' diet quality and reductions in ST might help lower their BP, but this observation needs testing in prospective studies..


Subject(s)
Hypertension , Sedentary Behavior , Humans , Female , Adult , Middle Aged , Blood Pressure/physiology , Prospective Studies , Cross-Sectional Studies , Diet
2.
Article in English | MEDLINE | ID: mdl-36706677

ABSTRACT

Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.


Subject(s)
Prohibitins , Receptors, Tumor Necrosis Factor, Type I , Receptors, Tumor Necrosis Factor, Type I/metabolism , Lipopolysaccharides , Toll-Like Receptor 4/metabolism , Fatty Acids/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Macrophages , Cytokines/metabolism , Cell Membrane/metabolism , Membrane Microdomains/metabolism , Phospholipids/metabolism , Chemokines/metabolism
3.
Article in English | MEDLINE | ID: mdl-36554322

ABSTRACT

Stressful events can significantly impact health behaviors of tertiary students in various ways. Many studies reported adverse alterations in health behaviors during the COVID-19 pandemic. However, there is limited knowledge about students from sub-Saharan African countries. Therefore, this study aimed to assess effects of the COVID-19 pandemic on the health behaviors of Ghanaian tertiary students, with an emphasis on the association between sleep and other health behaviors. A cross-sectional study with eligible tertiary students from the Kwame Nkrumah University of Science and Technology in Ghana (n = 129) was conducted. An online survey assessed quality and duration of sleep, financial stress, dietary risk, alcohol misuse, and physical exercise using validated tools. Health behaviors did not differ by gender. The COVID-19 pandemic negatively affected health behaviors for many students including dietary intake (20.2%), sleep quality (20.2%) and duration (81.4%), alcohol consumption (3.1%), exercise frequency (4.1%), and exercise intensity (38%). Shorter sleep duration was linked with greater alcohol misuse scores (p < 0.05). A majority of the students (56%) had increased financial stress during the pandemic. This study contributes important insights into the effects that stressful events such as a pandemic have on the health of higher education students in sub-Saharan Africa.


Subject(s)
Alcoholism , COVID-19 , Humans , Ghana/epidemiology , Cross-Sectional Studies , Pandemics , COVID-19/epidemiology , Health Behavior , Students , Ethanol
4.
Foods ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36496663

ABSTRACT

Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH), and (4) baleage+soybean hulls in feedlot (BLG-SH). Feed samples were analyzed for their nutritional value, and beef samples underwent analysis for fatty acids (FAs), vitamin E, minerals, lipid oxidation, and shear force. FAs were measured by GC-MS, vitamin E was analyzed chromatographically, minerals were analyzed by ICP-MS, and lipid oxidation was measured via a thiobarbituric acid reactive substances (TBARS) assay. G-SH beef had the highest n-6:n-3 ratio (p < 0.001), while BLG-SH beef contained less vitamin E (p < 0.001) and higher TBARS values (p < 0.001) compared to the other groups. G-HAY beef contained more long-chain n-3 polyunsaturated FAs compared to the other groups (p < 0.001). In conclusion, G-HAY beef had the most beneficial nutritional profile, while soybean hulls increased the n-6:n-3 ratio of beef.

5.
Foods ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360017

ABSTRACT

There is increasing interest in using grass-fed beef (GFB) by-products to augment the nutrient profile of eggs among local pasture-raising systems in the US. The objective of this study was to characterize egg yolk fatty acid and antioxidant profiles using eggs from pasture-raised hens fed a corn- and soy-free diet and supplemented with GFB suet and liver compared to eggs from pasture-raised hens fed a corn and soy layer hen feed and commercially obtained cage-free eggs. The egg yolk vitamin and mineral profile was also assessed by a commercial laboratory. Both pasture-raised groups had twice as much carotenoid content, three times as much omega-3 fatty acid content, and a 5−10 times lower omega-6:omega-3 fatty acid ratio compared to the cage-free eggs (p < 0.001). Eggs from hens fed a corn- and soy-free feed and GFB by-products had half as much omega-6 fatty acid content and five times more conjugated linoleic acid, three times more odd-chain fatty acid, and 6−70 times more branched-chain fatty acid content (p < 0.001). Feeding pasture-raised hens GFB suet and liver reduces agricultural waste while producing improved egg products for consumers, but further research is needed to quantify optimal supplementation levels and the efficacy of corn- and soy-free diets.

6.
Foods ; 11(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36360064

ABSTRACT

Cattle diet and breed modify the nutritional profile of beef. The objective of this study was to compare the fatty acid (FA) and micronutrient profiles of Red Angus (RA) and RA x Akaushi (AK) crossbreed steers fed either a grass or grain diet. This two-year study randomly assigned steers to the diets using a 2 × 2 factorial experiment. FAs and micronutrients were analyzed. Diet effect was the strongest with grass-finished beef being higher in n-3 polyunsaturated FAs (p < 0.001), conjugated linoleic acid (p < 0.05), vaccenic acid (p < 0.05), iron (p < 0.001), and vitamin E (p < 0.001) compared to grain-finished beef. Breed effects were observed for lauric and myristic acids (p < 0.05), selenium (p < 0.05), and zinc (p < 0.01) with AK containing more of these compounds than RA. Diet × breed effects were non-existent. These results indicate that diet has a stronger influence than breed on modifying the nutritional profile of beef. Because of a more favorable FA and antioxidant profile, consumption of grass-finished beef could benefit human health.

7.
J Lipid Res ; 63(10): 100267, 2022 10.
Article in English | MEDLINE | ID: mdl-36028048

ABSTRACT

Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.


Subject(s)
Fatty Acids, Omega-3 , Lung Injury , Ozone , Animals , Mice , Oxylipins/metabolism , Lipidomics , Fatty Acids, Omega-3/metabolism , Transcriptome , Mice, Inbred C57BL , Fatty Acids, Unsaturated/metabolism , Obesity/genetics , Inflammation/genetics , Inflammation/metabolism , Triglycerides , Lung/metabolism , Prostaglandins , Hydroxyeicosatetraenoic Acids , Glycerophospholipids , Receptors, Antigen, B-Cell , Diet, High-Fat/adverse effects
8.
J Nutr ; 152(7): 1783-1791, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35349683

ABSTRACT

BACKGROUND: Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES: The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS: Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS: Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS: A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.


Subject(s)
Fatty Acids, Omega-3 , Adult , Dietary Supplements , Docosahexaenoic Acids , Humans , Inflammation , Inflammation Mediators , Middle Aged , Obesity , Plasma
SELECTION OF CITATIONS
SEARCH DETAIL
...