Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 251, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017564

ABSTRACT

Influenza A viruses cause seasonal epidemics and global pandemics, representing a considerable burden to healthcare systems. Central to the replication cycle of influenza viruses is the viral RNA-dependent RNA polymerase which transcribes and replicates the viral RNA genome. The polymerase undergoes conformational rearrangements and interacts with viral and host proteins to perform these functions. Here we determine the structure of the 1918 influenza virus polymerase in transcriptase and replicase conformations using cryo-electron microscopy (cryo-EM). We then structurally and functionally characterise the binding of single-domain nanobodies to the polymerase of the 1918 pandemic influenza virus. Combining these functional and structural data we identify five sites on the polymerase which are sensitive to inhibition by nanobodies. We propose that the binding of nanobodies at these sites either prevents the polymerase from assuming particular functional conformations or interactions with viral or host factors. The polymerase is highly conserved across the influenza A subtypes, suggesting these sites as effective targets for potential influenza antiviral development.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Orthomyxoviridae/genetics , Pandemics , Single-Domain Antibodies/chemistry , Animals , Cryoelectron Microscopy , Genome, Viral , HEK293 Cells , Humans , Influenza A virus/genetics , Models, Molecular , Protein Binding , Protein Conformation , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase , Sf9 Cells , Single-Domain Antibodies/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
2.
Nature ; 573(7773): 287-290, 2019 09.
Article in English | MEDLINE | ID: mdl-31485076

ABSTRACT

Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans1,2. Influenza A viruses contain a segmented negative-sense RNA genome, which is transcribed and replicated by the viral-RNA-dependent RNA polymerase (FluPolA) composed of PB1, PB2 and PA subunits3-5. Although the high-resolution crystal structure of FluPolA of bat influenza A virus has previously been reported6, there are no complete structures available for human and avian FluPolA. Furthermore, the molecular mechanisms of genomic viral RNA (vRNA) replication-which proceeds through a complementary RNA (cRNA) replicative intermediate, and requires oligomerization of the polymerase7-10-remain largely unknown. Here, using crystallography and cryo-electron microscopy, we determine the structures of FluPolA from human influenza A/NT/60/1968 (H3N2) and avian influenza A/duck/Fujian/01/2002 (H5N1) viruses at a resolution of 3.0-4.3 Å, in the presence or absence of a cRNA or vRNA template. In solution, FluPolA forms dimers of heterotrimers through the C-terminal domain of the PA subunit, the thumb subdomain of PB1 and the N1 subdomain of PB2. The cryo-electron microscopy structure of monomeric FluPolA bound to the cRNA template reveals a binding site for the 3' cRNA at the dimer interface. We use a combination of cell-based and in vitro assays to show that the interface of the FluPolA dimer is required for vRNA synthesis during replication of the viral genome. We also show that a nanobody (a single-domain antibody) that interferes with FluPolA dimerization inhibits the synthesis of vRNA and, consequently, inhibits virus replication in infected cells. Our study provides high-resolution structures of medically relevant FluPolA, as well as insights into the replication mechanisms of the viral RNA genome. In addition, our work identifies sites in FluPolA that could be targeted in the development of antiviral drugs.


Subject(s)
Genome, Viral/genetics , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/enzymology , Models, Molecular , RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , Crystallization , Protein Structure, Tertiary , Single-Domain Antibodies/metabolism , Virus Replication
3.
Nature ; 565(7740): 454-459, 2019 01.
Article in English | MEDLINE | ID: mdl-30602790

ABSTRACT

Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.


Subject(s)
Alprazolam/chemistry , Bicuculline/chemistry , Cryoelectron Microscopy , Diazepam/chemistry , Picrotoxin/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Signal Transduction/drug effects , Allosteric Regulation/drug effects , Alprazolam/pharmacology , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Bicuculline/pharmacology , Binding, Competitive/drug effects , Diazepam/pharmacology , GABA Modulators/chemistry , GABA Modulators/pharmacology , Humans , Ligands , Models, Molecular , Nanostructures/chemistry , Picrotoxin/pharmacology
5.
Mol Cell ; 70(6): 1101-1110.e4, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29910112

ABSTRACT

Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Gammainfluenzavirus/genetics , Gammainfluenzavirus/ultrastructure , DNA-Directed RNA Polymerases/physiology , Humans , Protein Binding , Protein Domains/physiology , RNA Caps/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/physiology , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Transcription, Genetic , Viral Proteins/genetics , Virus Replication
6.
Sci Rep ; 7(1): 3678, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623264

ABSTRACT

The 2525 amino acid SMRT corepressor is an intrinsically disordered hub protein responsible for binding and coordinating the activities of multiple transcription factors and chromatin modifying enzymes. Here we have studied its interaction with HDAC7, a class IIa deacetylase that interacts with the corepressor complex together with the highly active class I deacetylase HDAC3. The binding site of class IIa deacetylases was previously mapped to an approximate 500 amino acid region of SMRT, with recent implication of short glycine-serine-isoleucine (GSI) containing motifs. In order to characterize the interaction in detail, we applied a random library screening approach within this region and obtained a range of stable, soluble SMRT fragments. In agreement with an absence of predicted structural domains, these were characterized as intrinsically disordered by NMR spectroscopy. We identified one of them, comprising residues 1255-1452, as interacting with HDAC7 with micromolar affinity. The binding site was mapped in detail by NMR and confirmed by truncation and alanine mutagenesis. Complementing this with mutational analysis of HDAC7, we show that HDAC7, via its surface zinc ion binding site, binds to a 28 residue stretch in SMRT comprising a GSI motif followed by an alpha helix.


Subject(s)
Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Binding Sites , Gene Expression , Histone Deacetylases/genetics , Humans , Magnetic Resonance Spectroscopy , Mutagenesis , Nuclear Receptor Co-Repressor 2/genetics , Protein Binding , Solubility , Structure-Activity Relationship
7.
Nature ; 527(7576): 114-7, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26503046

ABSTRACT

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.


Subject(s)
Gammainfluenzavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Endonucleases/chemistry , Endonucleases/metabolism , Enzyme Activation , Models, Molecular , Peptide Chain Initiation, Translational , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Caps/metabolism , RNA, Viral/biosynthesis , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Ribonucleoproteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL