Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 17(7): 461-475, 2022 03.
Article in English | MEDLINE | ID: mdl-35220724

ABSTRACT

Protein nanoparticles (NPs) can be used as vaccine platforms for target antigen presentation. Aim: To conduct a proof-of-concept study to demonstrate that an effective NP platform can be built based on a short self-assembling peptide (SAP) rather than a large self-assembling protein. Materials & methods: SUMO-based protein fusions (SFs) containing an N-terminal SAP and a C-terminal antigen were designed, expressed in Escherichia coli and purified. The structure was investigated by electron microscopy. The antibody response was tested in mice after two adjuvant-free immunizations. Results: Renatured SFs form fiber-like NPs with the antigen exposed on the surface and induce a significant antibody response with a remarkably high target-to-platform ratio. Conclusion: The platform is effective and has considerable potential for modification toward various applications, including vaccine development.


We aimed to extend the arsenal of protein platforms used for vaccine development. To this end, in this proof-of-concept study we constructed new self-assembling fusion proteins consisting of three modules. Module 1 is responsible for the self-assembly, while modules 2 and 3 are responsible for the immune response. Modules 1 and 2 form the platform, while module 3 represents the target antigen exposed on the surface of the self-assembled nanoparticles. After conventional biosynthesis in Escherichia coli, the proteins undergo efficient self-assembly during purification, and the resulting nanoparticles elicit a strong immune response without using an enhancing agent (adjuvant). The simple modular design and a high target-to-platform ratio of the immune response make our system a promising approach for practical applications, including vaccine development.


Subject(s)
Nanoparticles , Vaccines , Adjuvants, Immunologic , Animals , Antigen Presentation , Mice , Nanoparticles/chemistry , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL