Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Cells ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38391918

ABSTRACT

BACKGROUND: Cancer-associated thrombosis (CAT) and venous thromboembolism (VTE) are frequent cancer-related complications associated with high mortality; thus, this urges the identification of predictive markers. Immune checkpoint inhibitors (ICIs) used in cancer immunotherapy allow T-cell activation against cancer cells. Retrospective studies showed increased VTE following ICI administration in some patients. Non-small cell lung cancer (NSCLC) patients are at high risk of thrombosis and thus, the adoption of immunotherapy, as a first-line treatment, seems to be associated with coagulation-fibrinolysis derangement. METHODS: We pharmacologically modulated NSCLC cell lines in co-culture with CD8+ T-cells (TCD8+) and myeloid-derived suppressor cells (MDSCs), isolated from healthy blood donors. The effects of ICIs Nivolumab and Ipilimumab on NSCLC cell death were assessed by annexin V and propidium iodide (PI) flow cytometry analysis. The potential procoagulant properties were analyzed by in vitro clotting assays and enzyme-linked immunosorbent assays (ELISAs). The metabolic remodeling induced by the ICIs was explored by 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS: Flow cytometry analysis showed that TCD8+ and ICIs increase cell death in H292 and PC-9 cells but not in A549 cells. Conditioned media from NSCLC cells exposed to TCD8+ and ICI induced in vitro platelet aggregation. In A549, Podoplanin (PDPN) levels increased with Nivolumab. In H292, ICIs increased PDPN levels in the absence of TCD8+. In PC-9, Ipilimumab decreased PDPN levels, this effect being rescued by TCD8+. MDSCs did not interfere with the effect of TCD8+ in the production of TF or PDPN in any NSCLC cell lines. The exometabolome showed a metabolic remodeling in NSCLC cells upon exposure to TCD8+ and ICIs. CONCLUSIONS: This study provides some insights into the interplay of immune cells, ICIs and cancer cells influencing the coagulation status. ICIs are important promoters of coagulation, benefiting from TCD8+ mediation. The exometabolome analysis highlighted the relevance of acetate, pyruvate, glycine, glutamine, valine, leucine and isoleucine as biomarkers. Further investigation is needed to validate this finding in a cohort of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Thrombosis , Venous Thromboembolism , Humans , Carcinoma, Non-Small-Cell Lung/pathology , CD8-Positive T-Lymphocytes/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/therapeutic use , Lung Neoplasms/pathology , Nivolumab/pharmacology , Nivolumab/therapeutic use , Retrospective Studies
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166983, 2024 02.
Article in English | MEDLINE | ID: mdl-38070581

ABSTRACT

Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Cysteine , Cell Proliferation , Bromodomain Containing Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Mol Cell Endocrinol ; 578: 112063, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37678603

ABSTRACT

Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.

4.
Metabolites ; 13(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37755269

ABSTRACT

Ovarian cancer is the major cause of death from gynecological cancer and the third most common gynecological malignancy worldwide. Despite a slight improvement in the overall survival of ovarian carcinoma patients in recent decades, the cure rate has not improved. This is mainly due to late diagnosis and resistance to therapy. It is therefore urgent to develop effective methods for early detection and prognosis. We hypothesized that, besides being able to distinguish serum samples of patients with ovarian cancer from those of patients with benign ovarian tumors, 1H-NMR metabolomics analysis might be able to predict the malignant potential of tumors. For this, serum 1H-NMR metabolomics analyses were performed, including patients with malignant, benign and borderline ovarian tumors. The serum metabolic profiles were analyzed by multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. A metabolic profile associated with ovarian malignant tumors was defined, in which lactate, 3-hydroxybutyrate and acetone were increased and acetate, histidine, valine and methanol were decreased. Our data support the use of 1H-NMR metabolomics analysis as a screening method for ovarian cancer detection and might be useful for predicting the malignant potential of borderline tumors.

5.
Biomedicines ; 11(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37509679

ABSTRACT

Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount of knowledge produced by research on cancer metabolism, its implementation in cancer treatment has been limited. In this study, we explored transcriptomics data from the TCGA database to provide new insights for future definition of metabolism-related patterns useful for clinical applications. Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate) in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with the impact of these organic compounds on malignancy cell features. GBM cell lines were able to adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the presence of glucose and were able to produce and consume lactate. Glutamine dependency was also highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point out metabolic pathways to be targeted in GBM and also reinforce that patients' metabolic profiling can be useful in terms of personalized medicine.

6.
Lung Cancer ; 182: 107283, 2023 08.
Article in English | MEDLINE | ID: mdl-37379672

ABSTRACT

BACKGROUND: Metabolic remodeling is crucial in carcinogenesis and cancer progression. Oncogenic mutations may promote metabolic reprogramming in cancer cells to support their energy and biomass requirements. EGFR mutations are commonly found in non-small cell lung cancer (NSCLC) and may induce NSCLC metabolic rewiring. Whether EGFR-driven metabolic reprogramming triggers cell vulnerabilities with therapeutic potential remains unknown. METHODS: The role of EGFR signaling activation by EGF was investigated using NSCLC cell lines with different EGFR and KRAS status: A549 (EGFR WT and KRAS c.34G > A), H292 (EGFR WT and KRAS WT) and PC-9 (EGFR exon 19 E746-A750 deletion and KRAS WT). The effect of EGF on NSCLC cell death and cell cycle was evaluated using flow cytometry, and cell migration was assessed through wound healing. EGFR, HER2, MCT1, and MCT4 expression was analyzed through immunofluorescence or western blotting. We explored the impact of glucose and lactate bioavailability on NSCLC cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy. Moreover, the expression of several relevant metabolic genes in NSCLC cells or patient samples was determined by RT-qPCR. RESULTS: We showed that cell lines presented different metabolic profiles, and PC-9 cells were the most responsive to EGF stimulus, as they showed higher rates of cell proliferation and migration, together with altered metabolic behavior. By inhibiting EGFR with gefitinib, a decrease in glucose consumption was observed, which may be related to the fact that despite PC-9 harbor EGFR mutation, they still express the EGFR WT allele. The analysis of NSCLC patients' RNA showed a correlation between MCT1/MCT4 and GLUT1 expression in most cases, indicating that the metabolic information can serve as a reference in patients' follow-up. CONCLUSION: Together, this study shows that NSCLC cell lines have heterogeneous metabolic profiles, which may be underlaid by different genetic profiles, revealing an opportunity to identify and stratify patients who can benefit from metabolism-targeted therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Line, Tumor , Mutation
7.
Antioxidants (Basel) ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38247476

ABSTRACT

Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.

8.
Cancers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36139619

ABSTRACT

Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

9.
Biomedicines ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140393

ABSTRACT

The formation of new blood vessels is an important step in the morphogenesis and organization of tissues and organs; hence, the success of regenerative medicine procedures is highly dependent on angiogenesis control. Despite the biotechnological advances, tissue engineering is still a challenge. Regarding vascular network formation, the regulators are well known, yet the identification of markers is pivotal in order to improve the monitoring of the differentiation and proliferation of endothelial cells, as well as the establishment of a vascular network supporting tissue viability for an efficacious implantation. The metabolic profile accompanies the physiological stages of cells involved in angiogenesis, being a fruitful hub of biomarkers, whose levels can be easily retrieved. Through NMR spectroscopy, we identified branched amino acids, acetate, and formate as central biomarkers of monocyte-to-endothelial-cell differentiation and endothelial cell proliferation. This study reinforces the successful differentiation process of monocytes into endothelial cells, allowing self-to-self transplantation of patient-derived vascular networks, which is an important step in tissue engineering, since monocytes are easily isolated and autologous transplantation reduces the immune rejection events.

10.
Food Chem Toxicol ; 166: 113251, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35750087

ABSTRACT

Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Acrylamide , Aldehydes , Animals , Carcinogenesis , Carcinogens/metabolism , Carcinogens/toxicity , Epoxy Compounds , Furans/toxicity
11.
Molecules ; 27(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35209204

ABSTRACT

In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.


Subject(s)
Cysteine/metabolism , Kidney/metabolism , Precision Medicine , Brain/metabolism , Humans , Liver/metabolism , Organ Specificity
12.
Antioxidants (Basel) ; 10(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34573115

ABSTRACT

We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.

13.
Front Cell Dev Biol ; 9: 722412, 2021.
Article in English | MEDLINE | ID: mdl-34458274

ABSTRACT

Among gynecologic malignancies, ovarian cancer is the third most prevalent and the most common cause of death, especially due to diagnosis at an advanced stage together with resistance to therapy. As a solid tumor grows, cancer cells in the microenvironment are exposed to regions of hypoxia, a selective pressure prompting tumor progression and chemoresistance. We have previously shown that cysteine contributes to the adaptation to this hypoxic microenvironment, but the mechanisms by which cysteine protects ovarian cancer cells from hypoxia-induced death are still to be unveiled. Herein, we hypothesized that cysteine contribution relies on cellular metabolism reprogramming and energy production, being cysteine itself a metabolic source. Our results strongly supported a role of xCT symporter in energy production that requires cysteine metabolism instead of hydrogen sulfide (H2S) per se. Cysteine degradation depends on the action of the H2S-synthesizing enzymes cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE), and/or 3-mercaptopyruvate sulfurtransferase (MpST; together with cysteine aminotransferase, CAT). In normoxia, CBS and CSE inhibition had a mild impact on cysteine-sustained ATP production, pointing out the relevance of CAT + MpST pathway. However, in hypoxia, the concomitant inhibition of CBS and CSE had a stronger impact on ATP synthesis, thus also supporting a role of their hydrogen sulfide and/or cysteine persulfide-synthesizing activity in this stressful condition. However, the relative contributions of each of these enzymes (CBS/CSE/MpST) on cysteine-derived ATP synthesis under hypoxia remains unclear, due to the lack of specific inhibitors. Strikingly, NMR analysis strongly supported a role of cysteine in the whole cellular metabolism rewiring under hypoxia. Additionally, the use of cysteine to supply biosynthesis and bioenergetics was reinforced, bringing cysteine to the plateau of a main carbon sources in cancer. Collectively, this work supports that sulfur and carbon metabolism reprogramming underlies the adaptation to hypoxic microenvironment promoted by cysteine in ovarian cancer.

14.
Front Oncol ; 11: 656851, 2021.
Article in English | MEDLINE | ID: mdl-34150624

ABSTRACT

Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.

15.
Front Oncol ; 11: 656229, 2021.
Article in English | MEDLINE | ID: mdl-34041026

ABSTRACT

The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.

16.
Breast Cancer (Auckl) ; 15: 11782234211002496, 2021.
Article in English | MEDLINE | ID: mdl-33888988

ABSTRACT

BACKGROUND: Male breast carcinoma (male BC) is an uncommon neoplasia without individualized strategies for diagnosis and therapeutics. Low overall survival (OS) rates have been reported, mostly associated with patients' advanced stage and older age. Intratumoral heterogeneity versus homogeneity of malignant epithelial cells seems to be an important factor to consider for the development of combination therapies with curative intention. OBJECTIVE: In this preliminary study, we aim to provide valuable insight into the distinct clinicopathologic features of male BC. MATERIAL AND METHODS: In a series of 40 male BC patients, we evaluated by immunohistochemistry androgen receptor; activating transcription factor 3 (ATF3); p16; cyclin D1; fatty acid synthase (FASN); fatty acid transport protein 1 (FATP1); ß1, ß3, ß4, and ß6 integrins; collagen I and collagen IV; and their interactions. Kaplan-Meier survival curves and log-rank tests were assessed for statistical analysis. RESULTS: Homogeneous epithelial staining of p16, ATF3, ß6 integrin, FASN, and FATP1 was found to be significantly intercorrelated, and associated with high Ki67. These markers also stained tumor stromal fibroblasts. The prognostic analysis showed statistically significant associations of FASN with disease-free survival (DFS) and OS, as well as of ATF3 with OS and collagen IV with DFS. CONCLUSIONS: This study highlights, as a novel finding, the relevance of FASN, ATF3, and collagen IV immunophenotypes, which may have innovative application in the clinical management of male BC.

17.
Int J Mol Sci ; 22(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916438

ABSTRACT

Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasm Proteins/metabolism , Neoplasms/blood supply , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor Microenvironment/drug effects
18.
Br J Cancer ; 124(5): 862-879, 2021 03.
Article in English | MEDLINE | ID: mdl-33223534

ABSTRACT

To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.


Subject(s)
Cysteine/metabolism , Epigenesis, Genetic , Hydrogen Sulfide/metabolism , Mitochondria/metabolism , Molecular Targeted Therapy , Neoplasms/pathology , Animals , Energy Metabolism , Glycolysis , Humans , Metabolic Networks and Pathways , Neoplasms/genetics , Neoplasms/metabolism
19.
Biomolecules ; 10(10)2020 09 26.
Article in English | MEDLINE | ID: mdl-32993063

ABSTRACT

Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered 'glutamine addicted'. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.


Subject(s)
Central Nervous System/metabolism , Glioma/drug therapy , Glioma/metabolism , Glutamine/metabolism , Central Nervous System/drug effects , Glioma/pathology , Glutamic Acid/metabolism , Glutamine/therapeutic use , Glutathione/metabolism , Humans , Neurotransmitter Agents/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
20.
Molecules ; 25(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882966

ABSTRACT

Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.


Subject(s)
Neoplasms/enzymology , Neoplasms/metabolism , Sulfurtransferases/metabolism , Transaminases/metabolism , Animals , Humans , Metabolic Networks and Pathways , Molecular Targeted Therapy , Transaminases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...