Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Pflugers Arch ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396259

ABSTRACT

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

2.
medRxiv ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37965200

ABSTRACT

Introduction: A better understanding of the earliest stages of Alzheimer's disease (AD) could expedite the development or administration of treatments. Large population biobanks hold the promise to identify individuals at an elevated risk of AD and related dementias based on health registry information. Here, we establish the protocol for an observational clinical recall and biomarker study called TWINGEN with the aim to identify individuals at high risk of AD by assessing cognition, health and AD-related biomarkers. Suitable candidates were identified and invited to participate in the new study among Finnish biobank donors according to TWINGEN study criteria. Methods and analysis: A multi-center study (n=800) to obtain blood-based biomarkers, telephone-administered and web-based memory and cognitive parameters, questionnaire information on lifestyle, health and psychological factors, and accelerometer data for measures of physical activity, sedentary behavior and sleep. A sub-cohort are being asked to participate in an in-person neuropsychological assessment (n=200) and wear an Oura ring (n=50). All participants in the TWINGEN study have genome-wide genotyping data and up to 48 years of follow-up data from the population-based older Finnish Twin Cohort (FTC) study of the University of Helsinki. TWINGEN data will be transferred to Finnish Institute of Health and Welfare (THL) biobank and we aim to further to transfer it to the FinnGen study where it will be combined with health registry data for prediction of AD. Ethics and dissemination: This recall study consists of FTC/THL/FinnGen participants whose data were acquired in accordance with the Finnish Biobank Act. The recruitment protocols followed the biobank protocols approved by Finnish Medicines Agency. The TWINGEN study plan was approved by the Ethics Committee of Hospital District of Helsinki and Uusimaa (number 16831/2022). THL Biobank approved the research plan with the permission no: THLBB2022_83.

3.
J Biol Chem ; 298(8): 102222, 2022 08.
Article in English | MEDLINE | ID: mdl-35787374

ABSTRACT

Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an erythropoietic response. Preclinical data suggest that HIF-P4Hs could also be therapeutic targets for treating metabolic dysfunction, although the contributions of HIF-P4H isoenzymes in various tissues to the metabolic phenotype are inadequately understood. Here, we used mouse lines that were gene-deficient for HIF-P4Hs 1 to 3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of these isoenzymes to the anthropometric and metabolic outcome and HIF response. We show both inhibitors induced a HIF response in wildtype white adipose tissue (WAT), liver, and skeletal muscle and alleviated metabolic dysfunction during a 6-week treatment period, but they did not alter healthy metabolism. Our data indicate that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. In addition, we found HIF-P4H-3 had effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation, and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially during aging. Finally, we demonstrate HIF-P4H-2 affected all tissues studied; its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. We found very few HIF target metabolic mRNAs were regulated by the inhibition of three isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the future development of HIF-P4H inhibitors for the treatment of metabolic diseases.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Isoenzymes , Adipose Tissue, White/metabolism , Aging/metabolism , Animals , Body Weight , Cholesterol/blood , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Insulin Resistance , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Liver/metabolism , Mice , Muscle, Skeletal/metabolism , Obesity/metabolism
4.
Cell Mol Life Sci ; 79(8): 432, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852609

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia with limited treatment options affecting millions of people and the prevalence increasing with the aging population. The current knowledge on the role of the hypoxia/hypoxia-inducible factor (HIF) in the AD pathology is restricted and controversial. We hypothesized based on benefits of the genetic long-term inactivation of HIF prolyl 4-hydroxylase-2 (HIF-P4H-2) on metabolism, vasculature and inflammatory response that prolonged moderate activation of the hypoxia response could hinder AD pathology. We used an aging model to study potential spontaneous accumulation of amyloid-ß (Aß) in HIF-P4H-2-deficient mice and a transgenic APP/PSEN1 mouse model subjected to prolonged sustained environmental hypoxia (15% O2 for 6 weeks) at two different time points of the disease; at age of 4 and 10 months. In both settings, activation of the hypoxia response reduced brain protein aggregate levels and this associated with higher vascularity. In the senescent HIF-P4H-2-deficient mice metabolic reprogramming also contributed to less protein aggregates while in APP/PSEN1 mice lesser Aß associated additionally with hypoxia-mediated favorable responses to neuroinflammation and amyloid precursor protein processing. In conclusion, continuous, non-full-scale activation of the HIF pathway appears to mediate protection against neurodegeneration via several mechanisms and should be studied as a treatment option for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Humans , Hypoxia/genetics , Mice , Mice, Transgenic
5.
J Mol Cell Cardiol ; 164: 148-155, 2022 03.
Article in English | MEDLINE | ID: mdl-34919895

ABSTRACT

AIMS: We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS: When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS: These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.


Subject(s)
Cardiomegaly , Hypoxia , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mice , Rats
6.
Sci Adv ; 7(29)2021 07.
Article in English | MEDLINE | ID: mdl-34261659

ABSTRACT

Activation of the hypoxia-inducible factor (HIF) pathway reprograms energy metabolism. Hemoglobin (Hb) is the main carrier of oxygen. Using its normal variation as a surrogate measure for hypoxia, we explored whether lower Hb levels could lead to healthier metabolic profiles in mice and humans (n = 7175) and used Mendelian randomization (MR) to evaluate potential causality (n = 173,480). The results showed evidence for lower Hb levels being associated with lower body mass index, better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure. Expression of the key HIF target genes SLC2A4 and Slc2a1 in skeletal muscle and adipose tissue, respectively, associated with systolic blood pressure in MR analyses and body weight, liver weight, and adiposity in mice. Last, manipulation of murine Hb levels mediated changes to key metabolic parameters. In conclusion, low-end normal Hb levels may be favorable for metabolic health involving mild chronic activation of the HIF response.


Subject(s)
Hypoxia , Liver , Animals , Hemoglobins/genetics , Hemoglobins/metabolism , Hypoxia/genetics , Liver/metabolism , Metabolome , Mice , Oxygen/metabolism
8.
FASEB J ; 34(8): 9911-9924, 2020 08.
Article in English | MEDLINE | ID: mdl-32427381

ABSTRACT

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.


Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Disease Models, Animal , Heart/physiology , Muscular Atrophy/prevention & control , Myocardial Ischemia/complications , Transcription Factors/metabolism , Ventricular Remodeling/physiology , Activin Receptors, Type II/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Signal Transduction , Transcription Factors/genetics
9.
J Mol Med (Berl) ; 98(5): 719-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32296880

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2gt/gt mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2gt/gt tissues, including the liver, was 15-35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2gt/gt small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2gt/gt mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. KEY MESSAGES: • HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. • HIF-P4H-2 inhibition downregulates hepatic lipogenesis. • Induced browning of WAT and increased thermogenesis can also mediate protection. • HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD.


Subject(s)
Carbohydrate Metabolism , Fructose/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Thermogenesis , Animals , Biomarkers , Carbohydrate Metabolism/genetics , Diet , Disease Models, Animal , Disease Susceptibility , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Lipid Metabolism , Lipids/blood , Liver/metabolism , Liver/pathology , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/pathology , Thermogenesis/genetics
10.
Sci Rep ; 10(1): 4260, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32123262

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
FASEB J ; 34(4): 5590-5609, 2020 04.
Article in English | MEDLINE | ID: mdl-32100354

ABSTRACT

Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Inflammation/prevention & control , Kidney Diseases/prevention & control , Liver Diseases/prevention & control , Liver Neoplasms, Experimental/prevention & control , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Female , Inflammation/etiology , Inflammation/pathology , Kidney Diseases/etiology , Kidney Diseases/pathology , Liver Diseases/etiology , Liver Diseases/pathology , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/pathology , Longevity , Male , Mice , Mice, Knockout
12.
Basic Clin Pharmacol Toxicol ; 127(3): 178-195, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32060996

ABSTRACT

In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine 105 (S105) for the actions of GATA4 in an angiotensin II (AngII)-induced hypertension rat model. Adenoviral constructs overexpressing wild-type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg/kg/h) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT-qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII-induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult-to-foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild-type or mutated GATA4. Our results indicate that GATA4 reduces AngII-induced responses by interfering with pro-fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.


Subject(s)
GATA4 Transcription Factor/metabolism , Hypertension/physiopathology , Ventricular Remodeling/physiology , Angiotensin II , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Echocardiography , Fibroblasts , Fibrosis/metabolism , Hypertension/chemically induced , Male , Myocardial Infarction , Myocytes, Cardiac , Phosphorylation , Primary Cell Culture , Rats , Rats, Sprague-Dawley
13.
Redox Biol ; 22: 101145, 2019 04.
Article in English | MEDLINE | ID: mdl-30802717

ABSTRACT

Alcoholic fatty liver disease (AFLD) is a growing health problem for which no targeted therapy is available. We set out to study whether systemic inactivation of the main hypoxia-inducible factor prolyl 4-hydroxylase, HIF-P4H-2 (PHD2/EglN1), whose inactivation has been associated with protection against metabolic dysfunction, could ameliorate it. HIF-P4H-2-deficient and wild-type (WT) mice or HIF-P4H inhibitor-treated WT mice were subjected to an ethanol diet for 3-4 weeks and their metabolic health, liver and white adipose tissue (WAT) were analyzed. Primary hepatocytes from the mice were used to study cellular ethanol metabolism. The HIF-P4H-2-deficient mice retained a healthier metabolic profile, including less adiposity, better lipoprotein profile and restored insulin sensitivity, while on the ethanol diet than the WT. They also demonstrated protection from alcohol-induced steatosis and liver damage and had less WAT inflammation. In liver and WAT the expression of the key lipogenic and adipocytokine mRNAs, such as Fas and Ccl2, were downregulated, respectively. The upregulation of metabolic and antioxidant hypoxia-inducible factor (HIF) target genes, such as Slcs 16a1 and 16a3 and Gclc, respectively, and a higher catalytic activity of ALDH2 in the HIF-P4H-2-deficient hepatocytes improved handling of the toxic ethanol metabolites and oxidative stress. Pharmacological HIF-P4H inhibition in the WT mice phenocopied the protection against AFLD. Our data show that global genetic inactivation of HIF-P4H-2 and pharmacological HIF-P4H inhibition can protect mice from alcohol-induced steatosis and liver injury, suggesting that HIF-P4H inhibitors, now in clinical trials for renal anemia, could also be studied in randomized clinical trials for treatment of AFLD.


Subject(s)
Fatty Liver, Alcoholic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Animals , Biomarkers , Blood Glucose , Cell Line , Disease Models, Animal , Enzyme Activation , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/pathology , Female , Gene Expression , Hepatocytes/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Insulins/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Transgenic , Oxidative Stress , Reactive Oxygen Species/metabolism
14.
Sci Rep ; 8(1): 13583, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206264

ABSTRACT

Hypoxia of residence at high altitude (>2500 m) decreases birth weight. Lower birth weight associates with infant mortality and morbidity and increased susceptibility to later-in-life cardiovascular and metabolic diseases. We sought to determine the effects of hypoxia on maternal glucose and lipid metabolism and their contributions to fetal weight. C57BL6/NCrl mice, housed throughout gestation in normobaric hypoxia (15% oxygen) or normoxia, were studied at mid (E9.5) or late gestation (E17.5). Fetal weight at E17.5 was 7% lower under hypoxia than normoxia. The hypoxic compared with normoxic dams had ~20% less gonadal white adipose tissue at mid and late gestation. The hypoxic dams had better glucose tolerance and insulin sensitivity compared with normoxic dams and failed to develop insulin resistance in late gestation. They also had increased glucagon levels. Glucose uptake to most maternal tissues was ~2-fold greater in the hypoxic than normoxic dams. The alterations in maternal metabolism in hypoxia were associated with upregulation of hypoxia-inducible factor (HIF) target genes that serve, in turn, to increase glycolytic metabolism. We conclude that environmental hypoxia alters maternal metabolism by upregulating the HIF-pathway, and suggest that interventions that antagonize such changes in metabolism in high-altitude pregnancy may be helpful for preserving fetal growth.


Subject(s)
Adipose Tissue, White/metabolism , Fetal Development/genetics , Glucose/metabolism , Glycolysis/genetics , Hypoxia/metabolism , Lipid Metabolism/genetics , Animals , Birth Weight , Embryo, Mammalian , Female , Fetus , Gene Expression Regulation , Gestational Age , Glucagon/metabolism , Glucose Tolerance Test , Hypoxia/genetics , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Ovary/metabolism , Pregnancy
15.
Sci Rep ; 8(1): 4611, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545582

ABSTRACT

Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4-NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4-NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.


Subject(s)
GATA4 Transcription Factor/antagonists & inhibitors , Homeobox Protein Nkx-2.5/antagonists & inhibitors , Hypertension/prevention & control , Isoxazoles/pharmacology , Myocardial Infarction/prevention & control , Protein Interaction Domains and Motifs/drug effects , Reperfusion Injury/prevention & control , Small Molecule Libraries/pharmacology , Angiotensin II/toxicity , Animals , GATA4 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Homeobox Protein Nkx-2.5/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Phosphorylation , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
16.
Sci Rep ; 8(1): 1160, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348441

ABSTRACT

Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.


Subject(s)
Adult Stem Cells/metabolism , Chemokine CXCL12/genetics , Myocardial Infarction/genetics , Myocardium/metabolism , Proto-Oncogene Proteins c-kit/genetics , Regeneration/physiology , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Benzylamines , Cell Movement/drug effects , Cells, Cultured , Chemokine CXCL12/metabolism , Chemokine CXCL12/pharmacology , Cyclams , Disease Models, Animal , Gene Expression Regulation , Heart Atria/metabolism , Heart Atria/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heterocyclic Compounds/pharmacology , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Proto-Oncogene Proteins c-kit/metabolism , Rats , Rats, Sprague-Dawley , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism
17.
J Med Chem ; 60(18): 7781-7798, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28858485

ABSTRACT

Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 µM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.


Subject(s)
GATA4 Transcription Factor/metabolism , Homeobox Protein Nkx-2.5/metabolism , Isoxazoles/chemistry , Isoxazoles/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcriptional Activation/drug effects , Animals , Cell Line , GATA4 Transcription Factor/agonists , GATA4 Transcription Factor/antagonists & inhibitors , Homeobox Protein Nkx-2.5/agonists , Homeobox Protein Nkx-2.5/antagonists & inhibitors , Humans , Mice , Models, Molecular , Protein Interaction Maps/drug effects
18.
Mol Cell Biol ; 37(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27821476

ABSTRACT

Erythrocytosis is driven mainly by erythropoietin, which is regulated by hypoxia-inducible factor (HIF). Mutations in HIF prolyl 4-hydroxylase 2 (HIF-P4H-2) (PHD2/EGLN1), the major downregulator of HIFα subunits, are found in familiar erythrocytosis, and large-spectrum conditional inactivation of HIF-P4H-2 in mice leads to severe erythrocytosis. Although bone marrow is the primary site for erythropoiesis, spleen remains capable of extramedullary erythropoiesis. We studied HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice, which show slightly induced erythropoiesis upon aging despite nonincreased erythropoietin levels, and identified spleen as the site of extramedullary erythropoiesis. Splenic hematopoietic stem cells (HSCs) of these mice exhibited increased erythroid burst-forming unit (BFU-E) growth, and the mice were protected against anemia. HIF-1α and HIF-2α were stabilized in the spleens, while the Notch ligand genes Jag1, Jag2, and Dll1 and target Hes1 became downregulated upon aging HIF-2α dependently. Inhibition of Notch signaling in wild-type spleen HSCs phenocopied the increased BFU-E growth. HIFα stabilization can thus mediate non-erythropoietin-driven splenic erythropoiesis via altered Notch signaling.


Subject(s)
Down-Regulation , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Polycythemia/metabolism , Polycythemia/pathology , Receptors, Notch/metabolism , Aging/pathology , Anemia/complications , Anemia/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow/pathology , Cell Count , Colony-Forming Units Assay , Erythroid Precursor Cells/metabolism , Hyperplasia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/complications , Inflammation/pathology , Ligands , Male , Megakaryocytes/pathology , Mice , Models, Biological , Protein Stability , Signal Transduction , Spleen/pathology
19.
Pharmacol Res ; 114: 265-273, 2016 12.
Article in English | MEDLINE | ID: mdl-27832958

ABSTRACT

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs, also called PHDs and EglNs) are enzymes that act as cellular oxygen sensors. They are the main downregulators of the hypoxia-inducible factor (HIF). HIF-P4Hs can be targeted with small molecule inhibitors, which stabilize HIF under normoxia and initiate the hypoxia response. Such inhibitors are in phase 2 and 3 clinical trials for the treatment of anemia due to their ability to induce erythropoietin and iron metabolism genes. Recent data suggest that HIF-P4H inhibition has a therapeutic role beyond anemia in cardiac ischemia, obesity and metabolic dysfunction, and atherosclerosis. The molecular level mechanisms involved are HIF stabilization driven changes in gene expression that improve perfusion and endothelial function, reprogram metabolism to promote glucose intake and glycolysis over oxidative metabolism, reduce inflammation and beneficially modify innate immune system. This review discusses the recent findings in detail.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/therapeutic use , Animals , Humans , Hypoxia-Inducible Factor 1/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology
20.
Article in English | MEDLINE | ID: mdl-27017402

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the presence of iron-labeled adipose stem cells at the 2-week time point and vascular changes at the 2-week and 6-week time points using two different types of scaffolds. STUDY DESIGN: This study included 22 White New Zealand adult male rabbits. In six rabbits, full-thickness calvarial critical-sized defects were filled with autogenous adipose stem cells labeled with iron oxide seeded onto two scaffolds, namely, solid bioactive glass (BAG) or porous tricalcium phosphate granules (TCP) used on reciprocal sides of the skull. Eleven rabbits were implanted with adipose stem cell-seeded scaffolds without iron labeling for analysis of vascular changes. Five defects were left empty as negative control defects. The specimens were analyzed histologically at the 2-week and 6-week time points. RESULTS: The TCP group showed significantly more vascularity compared with the BAG group. A greater number of labeled stem cells were identified in the TCP group compared with the BAG group, but the difference was not statistically significant. CONCLUSIONS: This study revealed the differences in stem cell distribution and revascularization of the calvarial defect, which may be biomaterial dependent.


Subject(s)
Adipose Tissue/cytology , Ferric Compounds/pharmacology , Neovascularization, Physiologic/drug effects , Skull/surgery , Stem Cell Transplantation/methods , Animals , Calcium Phosphates , Ceramics , Male , Rabbits , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...