Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
3.
PLoS Pathog ; 13(2): e1006212, 2017 02.
Article in English | MEDLINE | ID: mdl-28225819

ABSTRACT

Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target. However, the MPER is proximal to the viral membrane and may be laterally inserted into the membrane in the Env prefusion form. Nevertheless, 10E8 has not been reported to have significant lipid-binding reactivity. Here we report x-ray structures of lipid complexes with 10E8 and a scaffolded MPER construct and mutagenesis studies that provide evidence that the 10E8 epitope is composed of both MPER and lipid. 10E8 engages lipids through a specific lipid head group interaction site and a basic and polar surface on the light chain. In the model that we constructed, the MPER would then be essentially perpendicular to the virion membrane during 10E8 neutralization of HIV-1. As the viral membrane likely also plays a role in selecting for the germline antibody as well as size and residue composition of MPER antibody complementarity determining regions, the identification of lipid interaction sites and the MPER orientation with regard to the viral membrane surface during 10E8 engagement can be of great utility for immunogen and therapeutic design.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV-1/immunology , Antibodies, Blocking/chemistry , Antibodies, Blocking/immunology , HIV Envelope Protein gp41/immunology , Humans , Protein Conformation , Surface Plasmon Resonance , X-Ray Diffraction
4.
Nature ; 507(7491): 201-6, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24499818

ABSTRACT

Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.


Subject(s)
Drug Design , Epitopes/chemistry , Epitopes/immunology , Protein Stability , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus Vaccines/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Macaca mulatta/immunology , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Neutralization Tests , Protein Conformation , Respiratory Syncytial Viruses/chemistry , Respiratory Syncytial Viruses/immunology
5.
Am J Pathol ; 181(2): 719-27, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22677420

ABSTRACT

We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.


Subject(s)
Bone Marrow Cells/pathology , CD11b Antigen/metabolism , Capillaries/pathology , Diabetes Mellitus, Experimental/pathology , Leukostasis/pathology , Monocytes/pathology , Receptors, CCR5/blood , Adoptive Transfer , Animals , CX3C Chemokine Receptor 1 , Capillaries/drug effects , Capillaries/metabolism , Capillaries/physiopathology , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Count , Cell Movement/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fluorescence , Fluorobenzenes/pharmacology , Leukostasis/blood , Leukostasis/complications , Leukostasis/physiopathology , Male , Mice , Mice, Inbred C57BL , Microcirculation/drug effects , Monocytes/drug effects , Monocytes/metabolism , Pyrimidines/pharmacology , Receptors, CCR2/metabolism , Receptors, Chemokine/metabolism , Retinal Vessels/drug effects , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinal Vessels/physiopathology , Rosuvastatin Calcium , Streptozocin , Sulfonamides/pharmacology
6.
Exp Eye Res ; 88(5): 983-91, 2009 May.
Article in English | MEDLINE | ID: mdl-19146853

ABSTRACT

Diabetic retinopathy (DR) is a leading cause of vision loss among working-age adults. Retinal endothelial cell apoptosis is an early event in DR, and oxidative stress is known to play an important role in this pathology. Recently, we found that high glucose induces apoptosis in retinal neural cells by a caspase-independent mechanism. Here, we investigated the mechanisms underlying retinal endothelial cell apoptosis induced by high glucose and oxidative/nitrosative stress conditions. Endothelial cells (TR-iBRB2 rat retinal endothelial cell line) were exposed to high glucose (long-term exposure, 7 days), or to NOC-18 (nitric oxide donor; 250microM) or H(2)O(2) (100microM) for 24h. Cell viability was assessed by the MTT assay and cell proliferation by [methyl-(3)H]-thymidine incorporation into DNA. Apoptotic cells were detected with Hoechst or Annexin V staining. Active caspases were detected by an apoptosis detection kit. Active caspase-3 and apoptosis-inducing factor (AIF) protein levels were assessed by Western blot or immunohistochemistry. High glucose, NOC-18 and H(2)O(2) increased apoptosis in retinal endothelial cells. High glucose and mannitol decreased cell proliferation, but mannitol did not induce apoptosis. Caspase activation did not increase in high glucose- or NOC-18-treated cells, but it increased in cells exposed to H(2)O(2). However, the protein levels of AIF decreased in mitochondrial fractions and increased in nuclear fractions, in all conditions. These results are the first demonstrating that retinal endothelial cell apoptosis induced by high glucose is independent of caspase activation, and is correlated with AIF translocation to the nucleus. NOC-18 and H(2)O(2) also activate a caspase-independent apoptotic pathway, although H(2)O(2) can also induce caspase-mediated apoptosis.


Subject(s)
Apoptosis/drug effects , Diabetic Retinopathy/pathology , Glucose/pharmacology , Retina/drug effects , Animals , Apoptosis Inducing Factor/metabolism , Caspases/physiology , Cell Fractionation/methods , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Diabetic Retinopathy/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme Activation/physiology , Hydrogen Peroxide/pharmacology , Mannitol/pharmacology , Nitric Oxide Donors/pharmacology , Nitrosation , Nitroso Compounds/pharmacology , Oxidative Stress/physiology , Rats , Retina/pathology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...