Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2400330, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924588

ABSTRACT

Poly(thiourethane)-based covalent adaptable networks are synthesized by reacting a trimer of hexamethylene diisocyanate (Desmodur N3300) containing isocyanurate groups in its structure with 1,6-hexanedithiol. The catalysts evaluated for this process include dibutyltin dilaurate (DBTDL), lanthanum triflate (La(OTf)3), and a thermal precursor of 1,8-diazabicyclo[5.4.0]undec-7-ene (BGDBU). The use of DBTDL results in the initiation of curing upon mixing, while the other two catalysts exhibit a latency period in the reactive mixture, with curing starting at about 90 °C. Notably, the use of the lanthanum salt produces an additional minor exothermic reaction at 80 °C. This phenomenon corresponds to the trimerization of isocyanates rending isocyanurates, leaving a portion of unreacted thiols. Materials prepared with BGDBU or La(OTf)3 present shorter relaxation times than those prepared with DBTDL. Nevertheless, the materials containing the lanthanum salt do not reach complete relaxation, likely due to the reinforcement of the permanent network through increased isocyanurate content. The formation of isocyanurates produces a stoichiometric imbalance, leaving unreacted thiols. This transforms the exchange process into a dual mechanism involving a dissociative process of thiourethanes to isocyanate and thiol, along with an interchange through thiol attacking the thiourethane group. The materials exhibit good recyclability and self-healing characteristics.

2.
ACS Sustain Chem Eng ; 12(15): 5965-5978, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38638547

ABSTRACT

This study presents the synthesis of a novel biobased epoxy monomer derived from vanillin and cystamine, incorporating imine and disulfide exchangeable groups within its structure. A series of epoxy-based vitrimers with two simultaneous exchange relaxation processes have been produced using this monomer. These exchange mechanisms operate without the need for any catalyst. Four different amine curing agents have been employed to achieve vitrimers with glass transition temperatures around 100 °C and excellent thermal stability. Through dynamic-mechanical analyses, thermomechanical properties and vitrimeric characteristics have been investigated, revealing remarkably fast stress relaxation at relatively low temperatures without significant creep below the glass transition temperature. Leveraging the dual exchange mechanism, the chemical degradability of these vitrimers has been explored through two accessible methodologies, and the material's reformation after degradation has been demonstrated in both cases. Furthermore, the material has been mechanically recycled, maintaining almost the same properties. Finally, these materials have been used to fabricate and recycle carbon-fiber-reinforced composite material and reversible adhesives, showcasing their promising potential applications.

3.
ACS Appl Polym Mater ; 6(6): 3364-3372, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38544971

ABSTRACT

Imine-based vitrimers were prepared from synthesized diimine-dimethacrylate monomer derived from biobased vanillin. First, a methacrylate derivative starting from vanillin was synthesized. The diimine derivative was synthesized by condensation of the aldehyde groups from two vanillin methacrylate units with the amine groups of hexamethylenediamine (HMDA). The synthesized product was used in formulations containing ethylene glycol phenyl ether methacrylate (EGPMA) as a reactive diluent for the customization of final material properties and cured by exposure to ultraviolet (UV)-light using suitable radical photoinitiators or else with temperature using a radical thermal initiator. Materials with glass transition temperatures (Tgs) ranging from 70 to 90 °C were prepared, showing good thermal stability and mechanical and thermomechanical properties. The evaluation of their vitrimeric characteristics revealed that all materials achieved a stress-relaxation factor (σ = 0.37σ0) in less than 130 s at 160 °C, with photocured materials exhibiting faster relaxation rates. The catalytic effect of phosphine oxide groups in imine metathesis has also been evidenced. All prepared materials could be mechanically recycled and completely solubilized in a two-step degradation process, putting evidence of their potential use for carbon fiber-reinforced composites (CFRCs). In addition, they demonstrated promising self-repairing abilities. Finally, as a proof of concept, it was established that these formulations could be effectively processed using a Digital Light Processing three-dimensional (3D) Printer (DLP), resulting in the fabrication of complex shapes with high resolution.

4.
Polymers (Basel) ; 15(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36987363

ABSTRACT

A series of poly(thiourethanes) (PTUs) from biobased monomers have been synthesized. Limonene and squalene were transformed into polyfunctional thiols by thiol-ene reaction with thioacetic acid and further saponification. They were then reacted in different proportions with hexamethylene diisocyanate (HDI) in the presence of a catalyst to prepare bio-based poly(thiourethane) vitrimer-like materials. The different functionalities of squalene and limonene thiols (six and two, respectively) allow for changing the characteristics of the final material by only varying their relative proportions in the reactive mixture. The proportions of thiol and isocyanate groups were stoichiometric in all the formulations tested. An acidic and a basic catalyst were tested in the preparation of the networked polymers. As the acidic catalyst, we selected dibutyltin dilaurate (DBTDL), and as the basic catalyst, a tetraphenylborate salt of 1,8-diazabicyclo(5.4.0)undec-7-ene (BGDBU), which has the advantage of only releasing the base at high temperatures. The materials obtained were characterized by thermogravimetry and thermomechanical analysis. The vitrimeric-like behavior was evaluated, and we could see that higher proportions of the limonene derivative in the formulations led to faster stress relaxation of the material. The use of the base catalyst led to a much shorter relaxation time. The materials obtained demonstrated good self-healing efficiency.

5.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683901

ABSTRACT

Hyperbranched polymers and multiarm star polymers are a type of dendritic polymers which have attracted substantial interest during the last 30 years because of their unique properties. They can be used to modify epoxy thermosets to increase their toughness and flexibility but without adversely affecting other properties such as reactivity or thermal properties. In addition, the final properties of materials can be tailored by modifying the structure, molecular weight, or type of functional end-groups of the hyperbranched and multiarm star polymers. In this review, we focus on the modification of epoxy-based thermosets with hyperbranched and multiarm star polymers in terms of the effect on the curing process of epoxy formulations, thermal, mechanical, and rheological properties, and their advantages in fire retardancy on the final thermosets.

6.
Polymers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160413

ABSTRACT

Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact of the incorporation of sulphate groups on the crystalline structure was committed, changes in the hydrophilicity and water retention ability or thermal stability were observed. These effects were also corroborated by the apparent activation energy during thermal decomposition obtained through kinetic analysis. Low-sulphated CNCs (E. benthamii) involved hints of a more crystalline structure along with less water retention ability, higher thermal stability, and greater average apparent activation energy (233 kJ·mol-1) during decomposition. Conversely, the high-sulphated species (E. globulus) involved higher reactivity during preparation that endorsed a little greater water retention ability and lower thermal stability, with subsequently less average apparent activation energy (185 kJ·mol-1). The E. smithii (212 kJ·mol-1) and En × Eg (196 kJ·mol-1) showed an intermediate behavior according to their sulphate index.

7.
Polymers (Basel) ; 13(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068369

ABSTRACT

In this work, a new family of poly(thiourethane) shape memory thermosetting actuators was developed and characterized. These materials can be easily prepared from mixtures of two different aliphatic diisocyanates and a trithiol in the presence of a latent catalyst, allowing an easy manipulation of the formulation. Rheological studies of the curing process confirm the latent character of the formulations. The glass transition temperatures and the mechanical properties can be modified by varying the proportion of diisocyanates (hexamethylene diisocyanate, HDI, and isophorone diisocyanate, IPDI) with stoichiometric amounts of trimethylolpropane tris(3-mercaptopropionate). The shape-memory behavior was deeply investigated under three different conditions: unconstrained, partially constrained, and fully constrained. Tests were performed in single cantilever bending mode to simulate conditions closer to real complex mechanics of thermomechanical actuators under flexural performances. The complex recovery process in single cantilever bending mode was compared with that obtained using tensile mode. The results evidenced that the amount of recovery force in fully constrained conditions, or energy released during the recovery process in partially constrained, can be modulated by simply changing the proportion of both diisocyanates. A simple model based on Timoshenko beam theory was used for the prediction of the amount of work performed. The reported results are an important guideline to design shape-memory materials based on poly(thiourethane) networks, establishing criteria for the choice of the material depending on the expected application.

8.
Polymers (Basel) ; 13(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809044

ABSTRACT

The use of renewable sources for optical 3D printing instead of petroleum-based materials is increasingly growing. Combinations of photo- and thermal polymerization in dual curing processes can enhance the thermal and mechanical properties of the synthesized thermosets. Consequently, thiol-ene/thiol-epoxy polymers were obtained by combining UV and thermal curing of acrylated epoxidized soybean oil and epoxidized linseed oil with thiols, benzene-1,3-dithiol and pentaerythritol tetra(3-mercaptopropionate). Thiol-epoxy reaction was studied by calorimetry. The changes of rheological properties were examined during UV, thermal and dual curing to select the most suitable formulations for laser direct writing (LDW). The obtained polymers were characterized by dynamic-mechanical thermal analysis, thermogravimetry, and mechanical testing. The selected dual curable mixture was tested in LDW 3D lithography for validating its potential in optical micro- and nano-additive manufacturing. The obtained results demonstrated the suitability of epoxidized linseed oil as a biobased alternative to bisphenol A diglycidyl ether in thiol-epoxy thermal curing reactions. Dual cured thermosets showed higher rigidity, tensile strength, and Young's modulus values compared with UV-cured thiol-ene polymers and the highest thermal stability from all prepared polymers. LDW results proved their suitability for high resolution 3D printing-individual features reaching an unprecedented 100 nm for plant-based materials. Finally, the biobased resin was tested for thermal post-treatment and 50% feature downscaling was achieved.

9.
Polymers (Basel) ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291704

ABSTRACT

A new type of tetraphenylborate salts derived from highly basic and nucleophilic amines, namely 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and triazabicyclodecene (TBD), was applied to the preparation of networked poly(thiourethane)s (PTUs), which showed a vitrimer-like behavior, with higher stress-relaxation rates than PTUs prepared by using dibutyl thin dilaurate (DBTDL) as the catalyst. The use of these salts, which release the amines when heated, instead of the pure amines, allows the formulation to be easily manipulated to prepare any type of samples. The materials prepared from stoichiometric mixtures of hexamethylene diisocyanate (HDI), trithiol (S3) and with a 10% of molar excess of isocyanate or thiol were characterized by FTIR, thermomechanical analysis, thermogravimetry, stress-relaxation tests and tensile tests, thus obtaining a complete thermal and mechanical characterization of the materials. The recycled materials obtained by grinding the original PTUs and hot-pressing the small pieces in the optimized time and temperature conditions were fully characterized by mechanical, thermomechanical and FTIR studies. This allowed us to confirm their recyclability, without appreciable changes in the network structure and performance. From several observations, the dissociative interchange trans-thiocarbamoylation mechanism was evidenced as the main responsible of the topological rearrangements at high temperature, resulting in a vitrimeric-like behavior.

10.
Polymers (Basel) ; 12(5)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397509

ABSTRACT

Click chemistry has emerged as an effective polymerization method to obtain thermosets with enhanced properties for advanced applications. In this article, commonly used click reactions have been reviewed, highlighting their advantages in obtaining homogeneous polymer networks. The basic concepts necessary to understand network formation via click reactions, together with their main characteristics, are explained comprehensively. Some of the advanced applications of thermosets obtained by this methodology are also reviewed.

11.
Polymers (Basel) ; 12(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131508

ABSTRACT

A series of bio-based epoxy shape-memory thermosetting polymers were synthesized starting from a triglycidyl phloroglucinol (3EPOPh) and trimethylolpropane triglycidyl ether (TPTE) as epoxy monomers and a polyetheramine (JEF) as crosslinking agent. The evolution of the curing process was studied by differential scanning calorimetry (DSC) and the materials obtained were characterized by means of DSC, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), stress-strain tests, and microindentation. Shape-memory properties were evaluated under free and totally constrained conditions. All results were compared with an industrial epoxy thermoset prepared from standard diglycidyl ether of Bisphenol A (DGEBA). Results revealed that materials prepared from 3EPOPh were more reactive and showed a tighter network with higher crosslinking density and glass transition temperatures than the prepared from DGEBA. The partial substitution of 3EPOPh by TPTE as epoxy comonomer caused an increase in the molecular mobility of the materials but without worsening the thermal stability. The shape-memory polymers (SMPs) prepared from 3EPOPh showed good mechanical properties as well as an excellent shape-memory performance. They showed almost complete shape-recovery and shape-fixation, fast shape-recovery rates, and recovery stress up to 7 MPa. The results obtained in this study allow us to conclude that the triglycidyl phloroglucinol derivative of eugenol is a safe and environmentally friendly alternative to DGEBA for preparing thermosetting shape-memory polymers.

12.
Polymers (Basel) ; 12(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033354

ABSTRACT

The pure trifunctional glycidyl monomer from phloroglucinol (3EPO-Ph) was synthesized and used as feedstock in the preparation of novel bio-based thermosets by thiol-epoxy curing. The monomer was crosslinked with different commercially available thiols: tetrafunctional thiol (PETMP), trifunctional thiol (TTMP) and an aromatic dithiol (TBBT) as curing agents in the presence of a base. As catalyst, two different commercial catalysts: LC-80 and 4-(N,N-dimethylamino) pyridine (DMAP) and a synthetic catalyst, imidazolium tetraphenylborate (base generator, BG) were employed. The curing of the reactive mixtures was studied by using DSC and the obtained materials by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The results revealed that only the formulations catalyzed by BG showed a latent character. Already prepared thermosetting materials showed excellent thermal, thermomechanical and mechanical properties, with a high transparency. In addition to that, when compared with the diglycidyl ether of bisphenol A (DGEBA)/PETMP material, the thermosets prepared from the triglycidyl derivative of phloroglucinol have better final characteristics and therefore this derivative can be considered as a partial or total renewable substitute of DGEBA in technological applications.

13.
Materials (Basel) ; 14(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383800

ABSTRACT

Dual-curing thermosetting systems are recently being developed as an alternative to conventional curing systems due to their processing flexibility and the possibility of enhancing the properties of cured parts in single- or multi-stage processing scenarios. Most dual-curing systems currently employed in three-dimensional (3D) printing technologies are aimed at improving the quality and properties of the printed parts. However, further benefit can be obtained from control in the curing sequence, making it possible to obtain partially reacted 3D-printed parts with tailored structure and properties, and to complete the reaction by activation of a second polymerization reaction in a subsequent processing stage. This paves the way for a range of novel applications based on the controlled reactivity and functionality of this intermediate material and the final consolidation of the 3D-printed part after this second processing stage. In this review, different strategies and the latest developments based on the concept of dual-curing are analyzed, with a focus on the enhanced functionality and emerging applications of the processed materials.

14.
Polymers (Basel) ; 11(9)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461979

ABSTRACT

A novel set of dual-curable multiacetoacetate-multiacrylate-divinyl sulfone ternary materials with versatile and manipulable properties are presented. In contrast to common dual-curing systems, the first stage polymer herein consists of a densely crosslinked, high Tg network as a result of base-catalyzed multiacetoacetate-divinyl sulfone Michael addition. A more flexible secondary network forms after base-catalyzed Michael addition of remaining multiacetoacetate to multiacrylate. Curing is truly sequential as the rates of the two Michael additions are significantly different. Curing kinetics were analyzed using differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). The materials at each curing stage were characterized using dynamic mechanical analysis (DMA) and SEM. Although some phase separation was observed in certain formulations, the incompatibilities were minimized when the molar percentage of the acetoacetate-divinyl sulfone polymer network was above 75%. Furthermore, the environmental scanning electron microscopy (ESEM) images of these materials show that the more flexible acetoacetate-acrylate phase is dispersed in the form of polymeric spheres within the rigid acetoacetate-divinyl sulfone matrix. This unique dual microstructure can potentially render these materials highly resilient in applications requiring densely crosslinked polymer architectures with enhanced toughness.

15.
Polymers (Basel) ; 11(1)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30960122

ABSTRACT

Novel composite coatings prepared from 3,4-epoxy cyclohexylmethyl 3,4-epoxycyclohexane carboxylate (ECC) and different ceramic fillers have been prepared to improve the thermal dissipation of electronic devices. As latent cationic initiator, a benzylanilinium salt with triethanolamine has been used, which leads to a polyether matrix. Different proportions of Al2O3, AlN and SiC as fillers were added to the reactive formulation. The effect of the fillers selected and their proportions on the evolution of the curing was studied by calorimetry and rheometry. The thermal conductivity, thermal stability, thermal expansion coefficient and thermomechanical and mechanical properties of the composites were evaluated. An improvement of 820% in thermal conductivity in reference to the neat material was reached with a 75 wt % of AlN, whereas glass transition temperatures higher than 200 °C were determined in all the composites.

16.
Polymers (Basel) ; 12(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892151

ABSTRACT

New thermosets from a triglycidyl eugenol derivative (3EPOEU) as a renewable epoxy monomer were obtained by an epoxy-amine curing process. A commercially-available Jeffamine® and isophorone diamine, both obtained from renewable resources, were used as crosslinking agents, and the materials obtained were compared with those obtained from a standard diglycidylether of bisphenol A (DGEBA). The evolution of the curing process was studied by differential scanning calorimetry and the materials obtained were characterized by means of calorimetry, thermogravimetry, thermodynamomechanical analysis, stress-strain tests and microindentation. 3EPOEU formulations were slightly less reactive, and the thermosets obtained showed higher Tgs than those prepared from DGEBA, since they had higher crosslinking density than formulations with DGEBA because of the more compact structure and higher functionality of the eugenol derivative. 3EPOEU thermosets showed good thermal stability and mechanical properties. The results obtained in this study allow us to conclude that the triglycidyl derivative of eugenol, 3EPOEU, is a safe and environmentally friendly alternative to DGEBA.

17.
Polymers (Basel) ; 10(2)2018 Feb 12.
Article in English | MEDLINE | ID: mdl-30966214

ABSTRACT

Acrylate chemistry has found widespread use in dual-curing systems over the years. Acrylates are cheap, easily handled and versatile monomers that can undergo facile chain-wise or step-wise polymerization reactions that are mostly of the "click" nature. Their dual-curing processes yield two distinct and temporally stable sets of material properties at each curing stage, thereby allowing process flexibility. The review begins with an introduction to acrylate-based click chemistries behind dual-curing systems and relevant reaction mechanisms. It then provides an overview of reaction combinations that can be encountered in these systems. It finishes with a survey of recent and breakthrough research in acrylate dual-curing materials for shape memory polymers, optical materials, photolithography, protective coatings, structured surface topologies, and holographic materials.

18.
Polymers (Basel) ; 10(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-30966312

ABSTRACT

In this work, the effect of the addition of boron nitride (BN) fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young's modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 µm agglomerates, allowed to increase this value until 1.75 W/K·m.

19.
Polymers (Basel) ; 10(4)2018 Apr 14.
Article in English | MEDLINE | ID: mdl-30966474

ABSTRACT

The effect of the chemical structure and functionality of three structurally different thiols on the cross-linking of acrylated epoxidized soybean oil and on the properties of the resulting polymers was investigated in this study. 1,3-Benzenedithiol, pentaerythritol tetra(3-mercaptopropionate), and an hexathiol synthesized from squalene were used in the cross-linking of acrylated epoxidized soybean oil by thiol⁻Michael addition reaction. The reactivity of thiols determined from calorimetric curves followed the order: 1,3-benzenedithiol > pentaerythritol tetra(3-mercaptopropionate) > hexathiolated squalene. Thermal and mechanical properties and the swelling in different solvents of the cross-linked polymers were studied. The cross-linked polymer obtained from 1,3-benzenedithiol showed the highest swelling values in chloroform and toluene. The cross-linked polymer with pentaerythritol tetra(3-mercaptopropionate) fragments showed the best mechanical performance (highest mechanical strength and Young's modulus) and thermal stability. The cross-linked polymers from hexathiolated squalene showed the highest glass transition temperature.

20.
Appl Spectrosc ; 67(12): 1427-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24359657

ABSTRACT

We present a novel methodology to simultaneously monitor of the degree of cure and curing shrinkage of thermosetting formulations. This methodology is based on the observation of changes in the infrared absorption of reactive functional groups and the groups used as a standard reference for normalization. While the optical path length is exact and controlled in transmission infrared spectroscopy, in attenuated total reflection Fourier transform infrared (ATR FT-IR), the exact determination of volume changes requires the measurement of the refractive indices of the studied system throughout the curing process or at least an indirect parallel measurement of this property. The methodology presented here allows one to achieve quantitative measurements of the degree of cure and shrinkage for thermosets using in situ ATR FT-IR spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL