Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cureus ; 15(6): e40638, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37476132

ABSTRACT

Introduction The coronavirus disease 2019 (COVID-19) pandemic has brought about significant changes in the medical field. While primarily characterized as a respiratory syndrome, COVID-19 is also associated with vascular events, particularly thrombotic complications. These events can manifest as initial presentations or develop as complications during the course of the disease, predominantly driven by immune-mediated mechanisms. Methods Patients with thrombotic complications followed in the post-COVID-19 thrombosis consult of 2021 were retrospectively analyzed and assessed for predisposing factors for pulmonary embolism (PE), including thrombophilias. Patients underwent reassessments over a minimum six-month period following diagnosis to evaluate vascular reperfusion and the potential discontinuation of anticoagulant therapy. Results All patients with PE exhibited segmental or subsegmental PE. Pulmonary CT angiography revealed that only one patient did not show complete reperfusion after six months of anticoagulant therapy alone. There were no instances of recurrent thrombotic events observed during this observation period. Among the studied patients, hypertension, diabetes, and obesity were identified as the most prevalent predisposing factors. No patients were diagnosed with thrombophilias or other relevant factors. Despite extensive research on the predisposing mechanisms of this complication in recent years, limited data exist regarding patients with this specific complication. Discussion and conclusion Continued research into COVID-19 patients and their complications is crucial for understanding the pathophysiological mechanisms and risk factors associated with these complications. The findings of this study support the existence of a multifactorial mechanism, with a significant pro-inflammatory component exacerbated by pre-existing risk factors, rather than a purely prothrombotic mechanism.

2.
Invest Radiol ; 58(12): 853-864, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37378418

ABSTRACT

OBJECTIVES: Artificial intelligence (AI) methods can be applied to enhance contrast in diagnostic images beyond that attainable with the standard doses of contrast agents (CAs) normally used in the clinic, thus potentially increasing diagnostic power and sensitivity. Deep learning-based AI relies on training data sets, which should be sufficiently large and diverse to effectively adjust network parameters, avoid biases, and enable generalization of the outcome. However, large sets of diagnostic images acquired at doses of CA outside the standard-of-care are not commonly available. Here, we propose a method to generate synthetic data sets to train an "AI agent" designed to amplify the effects of CAs in magnetic resonance (MR) images. The method was fine-tuned and validated in a preclinical study in a murine model of brain glioma, and extended to a large, retrospective clinical human data set. MATERIALS AND METHODS: A physical model was applied to simulate different levels of MR contrast from a gadolinium-based CA. The simulated data were used to train a neural network that predicts image contrast at higher doses. A preclinical MR study at multiple CA doses in a rat model of glioma was performed to tune model parameters and to assess fidelity of the virtual contrast images against ground-truth MR and histological data. Two different scanners (3 T and 7 T, respectively) were used to assess the effects of field strength. The approach was then applied to a retrospective clinical study comprising 1990 examinations in patients affected by a variety of brain diseases, including glioma, multiple sclerosis, and metastatic cancer. Images were evaluated in terms of contrast-to-noise ratio and lesion-to-brain ratio, and qualitative scores. RESULTS: In the preclinical study, virtual double-dose images showed high degrees of similarity to experimental double-dose images for both peak signal-to-noise ratio and structural similarity index (29.49 dB and 0.914 dB at 7 T, respectively, and 31.32 dB and 0.942 dB at 3 T) and significant improvement over standard contrast dose (ie, 0.1 mmol Gd/kg) images at both field strengths. In the clinical study, contrast-to-noise ratio and lesion-to-brain ratio increased by an average 155% and 34% in virtual contrast images compared with standard-dose images. Blind scoring of AI-enhanced images by 2 neuroradiologists showed significantly better sensitivity to small brain lesions compared with standard-dose images (4.46/5 vs 3.51/5). CONCLUSIONS: Synthetic data generated by a physical model of contrast enhancement provided effective training for a deep learning model for contrast amplification. Contrast above that attainable at standard doses of gadolinium-based CA can be generated through this approach, with significant advantages in the detection of small low-enhancing brain lesions.


Subject(s)
Brain Neoplasms , Deep Learning , Glioma , Humans , Rats , Mice , Animals , Contrast Media/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Artificial Intelligence , Gadolinium , Retrospective Studies , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted
3.
Glob Chang Biol ; 29(2): 355-374, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36131677

ABSTRACT

Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.


Subject(s)
Ecosystem , Environmental Monitoring , Animals , Humans , Environmental Monitoring/methods , Rivers , Fishes , Water Quality , Biodiversity , Invertebrates
4.
Br J Radiol ; 95(1140): 20220619, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36169642

ABSTRACT

OBJECTIVE: Contrast-enhanced MRI could be useful to guide high-intensity focused ultrasound treatment (HIFU), but the effects of HIFU on gadolinium-based agents is not known. Here, we tested in vitro the stability of gadoteridol and gadobenate dimeglumine, two widely used MR contrast agents, after exposure to HIFU at power levels typically applied in the clinical practice. METHODS: 0.5 M (gadoteridol and gadobenate dimeglumine) and diluted formulations (1:10 gadoteridol in saline) were exposed to different HIFU sequences. Unexposed and exposed solutions were characterized by high-performance liquid chromatography in terms of concentration of gadolinium complex, free gadolinium and free ligand. RESULTS: Gadoteridol formulation after treatment showed concentrations of the complex not significantly different from control. Free Gd and/or free ligand concentrations in the order of 0.002/0.004% w/w, were observed occasionally without significant correlation with intensity and duration of exposure to HIFU. Gadobenate dimeglumine formulation after treatment showed complex assay content values, by-products (0.24-0.26%) and free BOPTA levels (0.07%) comparable to control sample within the experimental error. CONCLUSION: In the range of conditions explored, HIFU exposure did not induce significant dissociations of gadoteridol and gadobenate dimeglumine, nor a detectable increase in the concentration of free species. ADVANCES IN KNOWLEDGE: Our study strengthens the hypothesis that gadolinium-based contrast agents are stable during HIFU treatment for body applications (e.g. thermal ablation of uterine fibroids).


Subject(s)
Gadolinium , Organometallic Compounds , Humans , Contrast Media , Gadolinium DTPA , Ligands , Meglumine , Magnetic Resonance Imaging/methods
5.
PLoS One ; 17(4): e0266776, 2022.
Article in English | MEDLINE | ID: mdl-35476808

ABSTRACT

Blue and green ecosystems are considered a key for the improvement of cities sustainability, providing numerous ecosystem services and habitat for many species. However, urban streams are still neglected and degraded, specially in southern European countries. One important step towards the rehabilitation of these ecosystems is the awareness of their importance by citizens. This study aimed to assess the effect of 1-year of activities (field and laboratory) of an environmental education project on primary school children, in improving their knowledge on urban stream ecosystems and their problems. We analyzed students' questionnaires before and after field and laboratory activities, drawings and group interviews. Initially, most children had incipient contact with rivers and streams, showing fears and lack of knowledge about them. As the project progressed, their perceptions changed, with a clear increase in the proportion of students recognizing the biodiversity associated to rivers (e.g., names of riparian trees, aquatic plants and invertebrates). Also, their fears decreased significantly, while their awareness to the impacts of artificialization and lack of riparian vegetation increased. Our results show that direct contact with nature have a positive role in the way it is understood by children, as well as promoting responsible and sustainable behaviors, being effective from the early primary-school years.


Subject(s)
Ecosystem , Rivers , Animals , Biodiversity , Child , Child, Preschool , Humans , Invertebrates , Trees
6.
Sci Total Environ ; 797: 149030, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34311381

ABSTRACT

Freshwater macroinvertebrates provide valuable indicators for biomonitoring ecosystem change in relation to natural and anthropogenic drivers. DNA metabarcoding is an efficient approach for estimating such indicators, but its results may differ from morphotaxonomic approaches traditionally used in biomonitoring. Here we test the hypothesis that despite differences in the number and identity of taxa recorded, both approaches may retrieve comparable patterns of community change, and detect similar ecological gradients influencing such changes. We compared results obtained with morphological identification at family level of macroinvertebrates collected at 80 streams under a Water Framework Directive biomonitoring program in Portugal, with results obtained with metabarcoding from the ethanol preserving the bulk samples, using either single (COI-M19BR2, 16S-Inse01, 18S-Euka02) or multiple markers. Metabarcoding recorded less families and different communities compared to morphotaxonomy, but community sensitivities to disturbance estimated with the IASPT index were more similar across approaches. Spatial variation in local community metrics and the factors influencing such variation were significantly correlated between morphotaxonomy and metabarcoding. After reducing random noise in the dissimilarity matrices, the spatial variation in community composition was also significantly correlated across methods. A dominant gradient of community change was consistently retrieved, and all methods identified a largely similar set of anthropogenic stressors strongly influencing such gradient. Overall, results confirm our initial hypothesis, suggesting that morphotaxonomy and metabarcoding can estimate consistent spatial patterns of community variation and their main drivers. These results are encouraging for macroinvertebrate biomonitoring using metabarcoding approaches, suggesting that they can be intercalibrated with morphotaxonomic approaches to recover equivalent spatial and temporal gradients of ecological change.


Subject(s)
DNA Barcoding, Taxonomic , Rivers , Biodiversity , DNA , Ecosystem , Environmental Monitoring , Fresh Water , Humans
7.
Sci Total Environ ; 794: 148696, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34217076

ABSTRACT

Dams modify geomorphology, water quantity, quality and timing of stream flows affecting ecosystem functioning and aquatic biota. In this study, we addressed the structural and functional macroinvertebrate community alterations in different instream mesohabitats of two Portuguese rivers impaired by dams. We sampled macroinvertebrates in riffles, runs and pools of river sites downstream of the dams (i.e. regulated; n = 24) and in sites without the influence of the dams (i.e. unregulated; n = 7), assessing a total of 64 mesohabitats, following late spring-early summer regular flows. We found a distinct taxonomic structure and trait composition of macroinvertebrate assemblages between regulated and unregulated flow sites, and also between mesohabitats in which the differences were more evident. When analysing each mesohabitat individually, the effect of flow regulation was detected only in run-type mesohabitats for both taxonomic and trait composition, leading us to infer that a selective macroinvertebrate assessment on run mesohabitats would be a valuable contribution to detect regulated flow effects on ecosystems impaired by dams. Additionally, there is evidence that respiration and locomotion traits could be effective tools to identify damming flow alterations. This study supports that the quality assessments of rivers impacted by dams could benefit from a sampling approach focused on run mesohabitats and the detection of some key traits, which would improve assessment accuracy.


Subject(s)
Ecosystem , Invertebrates , Animals , Biota , Environmental Monitoring , Rivers , Seasons
8.
J Magn Reson Imaging ; 54(5): 1636-1644, 2021 11.
Article in English | MEDLINE | ID: mdl-33973290

ABSTRACT

BACKGROUND: Studies of gadolinium (Gd) clearance from animals in the first weeks after administration of gadolinium-based contrast agents (GBCAs) have previously looked at solitary timepoints only. However, this does not give information on differences between GBCAs and between organs in terms of Gd elimination kinetics. PURPOSE: To compare Gd levels in rat cerebellum, cerebrum, skin, and blood at 1, 2, 3, and 5 weeks after repeated administration of macrocyclic GBCAs. STUDY TYPE: Prospective. ANIMAL MODEL: One hundred eighty male Sprague-Dawley rats randomized to three groups (n = 60/group), received intravenous administrations of gadoteridol, gadoterate meglumine, or gadobutrol (0.6 mmol/kg for each) four times/week for 5 consecutive weeks. Rats were sacrificed after washout periods of 1, 2, 3, or 5 weeks. FIELD STRENGTH/SEQUENCE: Not applicable. ASSESSMENT: Cerebellum, cerebrum, skin, and blood were harvested for Gd determination by inductively coupled plasma-mass spectrometry (15 animals/group/all timepoints). STATISTICAL TESTS: Anova and Dunnett's test (data with homogeneous variances and normal distribution). Kruskal-Wallis and Wilcoxon's rank sum tests (data showing nonhomogeneous variances or a non-normal distribution, significance levels: P < 0.05, P < 0.01, and P < 0.001). RESULTS: Gd levels in cerebellum, cerebrum, and skin were significantly lower after gadoteridol than after gadoterate and gadobutrol at all timepoints. Mean cerebellum Gd concentrations after gadoteridol, gadoterate, and gadobutrol decreased from 0.693, 0.878, and 1.011 nmol Gd/g at 1 week to 0.144, 0.282, and 0.297 nmol Gd/g at 5 weeks after injection. Similar findings were noted for cerebrum and skin. Conversely, significantly higher Gd levels were noted in blood after gadoteridol compared to gadobutrol at 1, 2, and 3 weeks and compared to gadoterate at all timepoints. DATA CONCLUSION: Gadoteridol is eliminated more rapidly from rat cerebellum, cerebrum, and skin compared to gadoterate and gadobutrol in the first 5 weeks after administration, resulting in lower levels of retained Gd in these tissues. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 5.


Subject(s)
Gadolinium , Organometallic Compounds , Administration, Intravenous , Animals , Brain , Contrast Media , Gadolinium DTPA , Heterocyclic Compounds , Kinetics , Male , Meglumine , Models, Animal , Prospective Studies , Rats , Rats, Sprague-Dawley
9.
Lab Anim ; 55(5): 472-477, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33884898

ABSTRACT

Breast cancer is the most common cancer among women worldwide. For high-risk women, contrast enhanced (CE)-magnetic resonance imaging (MRI) is recommended as supplemental screening together with mammography. The development of new MRI contrast agents is an active field of research, which requires efficacy tests on appropriate preclinical pathological models. In this work, a refined method to orthotopically induce breast cancer in BALB/c mice was developed using ultrasound (US) as a guide for the precise localisation of the tumour induction site and to improve animal welfare. The method was coupled with CE-MRI to characterise the evolution of the tumoural lesion.


Subject(s)
Mammography , Neoplasms , Animals , Contrast Media , Disease Models, Animal , Mice , Mice, Inbred BALB C , Ultrasonography, Interventional
10.
Mol Ecol ; 30(13): 3221-3238, 2021 07.
Article in English | MEDLINE | ID: mdl-32860303

ABSTRACT

DNA metabarcoding from the ethanol used to store macroinvertebrate bulk samples is a convenient methodological option in molecular biodiversity assessment and biomonitoring of aquatic ecosystems, as it preserves specimens and reduces problems associated with sample sorting. However, this method may be affected by errors and biases, which need to be thoroughly quantified before it can be mainstreamed into biomonitoring programmes. Here, we used 80 unsorted macroinvertebrate samples collected in Portugal under a Water Framework Directive monitoring programme, to compare community diversity and taxonomic composition metrics estimated through morphotaxonomy versus metabarcoding from storage ethanol using three markers (COI-M19BR2, 16S-Inse01 and 18S-Euka02) and a multimarker approach. A preliminary in silico analysis showed that the three markers were adequate for the target taxa, with detection failures related primarily to the lack of adequate barcodes in public databases. Metabarcoding of ethanol samples retrieved far less taxa per site (alpha diversity) than morphotaxonomy, albeit with smaller differences for COI-M19BR2 and the multimarker approach, while estimates of taxa turnover (beta diversity) among sites were similar across methods. Using generalized linear mixed models, we found that after controlling for differences in read coverage across samples, the probability of detection of a taxon was positively related to its proportional abundance, and negatively so to the presence of heavily sclerotized exoskeleton (e.g., Coleoptera). Overall, using our experimental protocol with different template dilutions, the COI marker showed the best performance, but we recommend the use of a multimarker approach to detect a wider range of taxa in freshwater macroinvertebrate samples. Further methodological development and optimization efforts are needed to reduce biases associated with body armouring and rarity in some macroinvertebrate taxa.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Bias , Biodiversity , Fresh Water , Portugal
11.
Dalton Trans ; 49(42): 14863-14870, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33073806

ABSTRACT

The interactions of gadoterate meglumine, gadobutrol, gadoteridol and Gd(HB-DO3A) with bovine Type I collagen were investigated by ultrafiltration and dialysis. The affinity of the four agents to collagen is similar. However, the maximum adsorbed amount of GdIII-complexes decreases in the following order: gadoterate meglumine > gadobutrol > gadoteridol > Gd(HB-DO3A). Calculations with the open three-compartment model reveal that the structural homologs gadoteridol and Gd(HB-DO3A) have a lower adsorption onto collagen, which may explain the less prolonged in vivo retention of gadoteridol observed in soft tissues of rats.


Subject(s)
Collagen Type I/chemistry , Contrast Media/chemistry , Coordination Complexes/chemistry , Gadolinium/chemistry , Macrocyclic Compounds/chemistry , Animals , Cattle , Heterocyclic Compounds/chemistry , Kinetics , Ligands , Magnetic Resonance Imaging/methods , Meglumine/chemistry , Models, Molecular , Organometallic Compounds/chemistry , Rats , Structure-Activity Relationship , Thermodynamics
12.
Sci Total Environ ; 722: 137900, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32199386

ABSTRACT

Diatoms are a compulsory biological quality element in the ecological assessment of rivers according to the Water Framework Directive. The application of current official indices requires the identification of individuals to species or lower rank under a microscope based on the valve morphology. This is a highly time-consuming task, often susceptible of disagreements among analysts. In alternative, the use of DNA metabarcoding combined with High-Throughput Sequencing (HTS) has been proposed. The sequences obtained from environmental DNA are clustered into Operational Taxonomic Units (OTUs), which can be assigned to a taxon using reference databases, and from there calculate biotic indices. However, there is still a high percentage of unassigned OTUs to species due to the incompleteness of reference libraries. Alternatively, we tested a new taxonomy-free approach based on diatom community samples to assess rivers. A combination of three machine learning techniques is used to build models that predict diatom OTUs expected in test sites, under reference conditions, from environmental data. The Observed/Expected OTUs ratio indicates the deviation from reference condition and is converted into a quality class. This approach was never used with diatoms neither with OTUs data. To evaluate its efficiency, we built a model based on OTUs lists (HYDGEN) and another based on taxa lists from morphological identification (HYDMORPH), and also calculated a biotic index (IPS). The models were trained and tested with data from 81 sites (44 reference sites) from central Portugal. Both models were considered accurate (linear regression for Observed and Expected richness: R2 ≈ 0.7, interception ≈ 0.8) and sensitive to global anthropogenic disturbance (Rs2 > 0.30 p < 0.006 for global disturbance). Yet, the HYDGEN model based on molecular data was sensitive to more types of pressures (such as, changes in land use and habitat quality), which gives promising insights to its use for bioassessment of rivers.


Subject(s)
Diatoms , Rivers , Environmental Monitoring , Machine Learning , Portugal
13.
Animal Model Exp Med ; 2(1): 58-63, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31016288

ABSTRACT

Meningioma in vivo research is hampered by the difficulty of establishing an easy and reproducible orthotopic model able to mimic the characteristics of a human meningioma. Moreover, leptomeningeal dissemination and high mortality are often associated with such orthotopical models, making them useless for clinical translation studies. An optimized method for inducing meningiomas in nude mice at two different sites is described in this paper and the high reproducibility and low mortality of the models are demonstrated. Skull base meningiomas were induced in the auditory meatus and convexity meningiomas were induced on the brain surface of 23 and 24 nude mice, respectively. Both models led to the development of a mass easily observable by imaging methods. Dynamic contrast enhanced MRI was used as a tool to monitor and characterize the pathology onset and progression. At the end of the study, histology was performed to confirm the neoplastic origin of the diseased mass.

14.
Chem Commun (Camb) ; 54(72): 10056-10059, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30132469

ABSTRACT

The Gd(iii)-complexes of three novel HP-DO3A-like ligands have been investigated to assess the relationship between relaxometry and intramolecular catalysis of the proton exchange. The structures of these ligands differ from the parent HP-DO3A because the methyl group of the hydroxy-propyl arm has been replaced by -Ph-OH, -Ph-NH2 and -Ph-COOH, respectively. The phenol, amine and carboxylate functionalities display an intramolecular H-bonding with the coordinated hydroxyl moiety that affects either the pK values of the involved functionalities and the rate of the proton exchange process.

15.
Sci Rep ; 8(1): 9576, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29934551

ABSTRACT

Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Deoxyglucose/metabolism , Magnetic Resonance Imaging , Amyloid beta-Protein Precursor/metabolism , Animals , Biological Transport , Disease Models, Animal , Image Processing, Computer-Assisted , Mice
17.
Inorg Chem ; 57(9): 5567-5574, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29687717

ABSTRACT

The relaxivity of Gd(HP-DO3A) was studied as a function of pH and buffer composition in order to identify the main factors of the observed relaxation enhancement due to the exchange of the coordinated hydroxyl proton. It was established that the paramagnetic relaxation time, T1M, of the coordinated hydroxyl proton is about 50% shorter than that of the protons in the coordinated water molecule. The control of the p K of the coordinated alcoholic -OH moiety in the ligand is fundamental to utilize the proton exchange enhanced relaxivity under physio/pathologic conditions. A new derivative of Gd(HP-DO3A) was synthesized by replacing the -CH3 group with a -CF3 moiety. In this complex, the -OH group becomes more acidic. Consequently, the maximum contribution of the proton exchange to the relaxivity is shifted to a lower pH region with the fluorinated ligand.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Magnetic Resonance Imaging , Organometallic Compounds/chemistry , Protons , Contrast Media/chemical synthesis , Hydrogen-Ion Concentration , Molecular Structure , Organometallic Compounds/chemical synthesis
19.
ChemMedChem ; 13(8): 824-834, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29442438

ABSTRACT

A dinuclear gadolinium(III) chelate containing two moieties of diethylenetriaminepentaacetic acid (DTPA), covalently conjugated to an analogue of deoxycholic acid, was synthesized and thoroughly characterized. A full relaxometric analysis was carried out, consisting of 1) the acquisition of nuclear magnetic resonance dispersion (NMRD) profiles in various media; 2) the study of binding affinity to serum albumin; 3) the measurement of 17 O transverse relaxation rate versus temperature, and 4) a transmetallation assay. In vivo biodistribution MRI studies at 1 T and blood pharmacokinetics assays were carried out in comparison with Gd-DTPA (Magnevist) and gadocoletic acid trisodium salt (B22956/1), two well-known Gd complexes that share the same chelating cage and the same deoxycholic acid residue of the Gd complex investigated herein ((GdDTPA)2 -Chol). High affinity for plasma protein and, in particular, the availability of more than one binding site, allows the complex to reach a fairly high relaxivity value in plasma (∼20 mm-1 s-1 , 20 MHz, 310 K) as well as to show unexpectedly enhanced properties of blood pooling, with an elimination half-life in rats approximately seven times longer than that of B22956/1.


Subject(s)
Contrast Media/chemistry , Contrast Media/pharmacokinetics , Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/pharmacokinetics , Gadolinium DTPA/analogs & derivatives , Gadolinium DTPA/pharmacokinetics , Animals , Contrast Media/chemical synthesis , Contrast Media/metabolism , Deoxycholic Acid/chemical synthesis , Deoxycholic Acid/metabolism , Female , Gadolinium DTPA/chemical synthesis , Gadolinium DTPA/metabolism , Magnetic Resonance Imaging , Male , Rats , Rats, Wistar , Serum Albumin/metabolism , Tissue Distribution
20.
J Magn Reson ; 287: 1-9, 2018 02.
Article in English | MEDLINE | ID: mdl-29272735

ABSTRACT

Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.


Subject(s)
Magnetic Resonance Imaging/methods , Algorithms , Contrast Media , Hydrogen-Ion Concentration , Image Interpretation, Computer-Assisted , Phantoms, Imaging , Triiodobenzoic Acids
SELECTION OF CITATIONS
SEARCH DETAIL