Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(19): 4809-4820, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38646680

ABSTRACT

We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.


Subject(s)
Metal Nanoparticles , Platinum , Silver , Metal Nanoparticles/chemistry , Catalysis , Platinum/chemistry , Silver/chemistry , Oxidation-Reduction , Polyurethanes/chemistry , Nitrophenols/chemistry , Particle Size , Aminophenols/chemistry
2.
J Reprod Immunol ; 150: 103493, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35217240

ABSTRACT

Probiotics can modulate the host immune system and keep a healthy microbiota thus enhancing the integrity of the mucosal epithelium. They were proven to be useful as therapeutic strategies for a variety of inflammatory diseases. Preterm birth is a multicausal complication where the early inflammatory cascade activation affects both the mother and the fetus and may have an irreversibly impact on infant development. Prevention of preterm birth is a challenge that calls for different strategies targeting its diverse etiologies. For the past decade, novel and numerous studies investigated the role of probiotics for the prevention of preterm birth given their above-mentioned abilities. This allows a wider approach to the multifactorial causes of preterm birth. In this sense, probiotic administration was shown to be inversely related to the rate of preterm birth. In this review, we discuss the latest reports involving probiotics and preterm birth, and the chances of probiotics becoming a therapeutic strategy for the prevention of pregnancy-associated pathologies like preterm birth shortly.


Subject(s)
Microbiota , Premature Birth , Probiotics , Child , Female , Humans , Infant, Newborn , Mothers , Pregnancy , Premature Birth/prevention & control , Probiotics/therapeutic use
3.
Front Pharmacol ; 12: 658026, 2021.
Article in English | MEDLINE | ID: mdl-33935778

ABSTRACT

Ulcerative colitis and Crohn's disease, the two main forms of inflammatory bowel disease (IBD), are immunologically mediated disorders. Several therapies are focused on activated T cells as key targets. Although Lactobacillus kefiri has shown anti-inflammatory effects in animal models, few studies were done using human mucosal T cells. The aim of this work was to investigate the immunomodulatory effects of this bacterium on intestinal T cells from patients with active IBD. Mucosal biopsies and surgical samples from IBD adult patients (n = 19) or healthy donors (HC; n = 5) were used. Lamina propria mononuclear cells were isolated by enzymatic tissue digestion, and entero-adhesive Escherichia coli-specific lamina propria T cells (LPTC) were expanded. The immunomodulatory properties of L. kefiri CIDCA 8348 strain were evaluated on biopsies and on anti-CD3/CD28-activated LPTC. Secreted cytokines were quantified by ELISA, and cell proliferation and viability were assessed by flow cytometry. We found that L. kefiri reduced spontaneous release of IL-6 and IL-8 from inflamed biopsies ex vivo. Activated LPTC from IBD patients showed low proliferative rates and reduced secretion of TNF-α, IL-6, IFN-γ and IL-13 in the presence of L. kefiri. In addition, L. kefiri induced an increased frequency of CD4+FOXP3+ LPTC along with high levels of IL-10. This is the first report showing an immunomodulatory effect of L. kefiri CIDCA 8348 on human intestinal cells from IBD patients. Understanding the mechanisms of interaction between probiotics and immune mucosal cells may open new avenues for treatment and prevention of IBD.

4.
J Biol Chem ; 295(42): 14430-14444, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817316

ABSTRACT

S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic Lactobacillus kefiri CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far. Herein, we analyze the glycosylation pattern of three SLPs, SLP-8348, SLP-8321, and SLP-5818, and explore how these patterns impact their recognition by C-type lectin receptors and the immunomodulatory effect of the L. kefiri SLPs on antigen-presenting cells. High-performance anion-exchange chromatography-pulse amperometric detector performed after ß-elimination showed glucose as the major component in the O-glycans of the three SLPs; however, some differences in the length of hexose chains were observed. No N-glycosylation signals were detected in SLP-8348 and SLP-8321, but SLP-5818 was observed to have two sites carrying complex N-glycans based on a site-specific analysis and a glycomic workflow of the permethylated glycans. SLP-8348 was previously shown to enhance LPS-induced activation on both RAW264.7 macrophages and murine bone marrow-derived dendritic cells; we now show that SLP-8321 and SLP-5818 have a similar effect regardless of the differences in their glycosylation patterns. Studies performed with bone marrow-derived dendritic cells from C-type lectin receptor-deficient mice revealed that the immunostimulatory activity of SLP-8321 depends on its recognition by Mincle, whereas SLP-5818's effects are dependent on SignR3 (murine ortholog of human DC-SIGN). These findings encourage further investigation of both the potential application of these SLPs as new adjuvants and the protein glycosylation mechanisms in these bacteria.


Subject(s)
Antigens, CD/metabolism , Lactobacillus/metabolism , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Amino Acid Sequence , Animals , Antigens, CD/genetics , Chromatography, High Pressure Liquid , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycosylation , Immunization , Interferon-gamma/metabolism , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , Lipopolysaccharides/pharmacology , Membrane Glycoproteins/chemistry , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Polysaccharides/analysis , Polysaccharides/chemistry , RAW 264.7 Cells , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Front Immunol ; 10: 1422, 2019.
Article in English | MEDLINE | ID: mdl-31297112

ABSTRACT

The development of new subunit vaccines has promoted the rational design of adjuvants able to induce a strong T-cell activation by targeting specific immune receptors. The S-layer is a (glyco)-proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea. Due to their ability to self-assemble in solution, they are attractive tools to be used as antigen/hapten carriers or adjuvants. Recently, we have demonstrated that S-layer glycoprotein from Lactobacillus kefiri CIDCA 8348 (SLP-8348) enhanced the LPS-induced response on macrophages in a Ca2+-dependent manner, but the receptors involved in these immunomodulatory properties remain unknown. Therefore, we aim to determine the C-type lectin receptors (CLRs) recognizing this bacterial surface glycoprotein as well as to investigate the role of glycans in both the immunogenicity and adjuvant capacity of SLP-8348. Here, using a mild periodate oxidation protocol, we showed that loss of SLP-8348 glycan integrity impairs the cell-mediated immune response against the protein. Moreover, our data indicate that the adjuvant capacity of SLP-8348 is also dependent of the biological activity of the SLP-8348 glycans. In order to evaluate the CLRs involved in the interaction with SLP-8348 an ELISA-based method using CLR-hFc fusion proteins showed that SLP-8348 interacts with different CLRs such as Mincle, SingR3, and hDC-SIGN. Using BMDCs derived from CLR-deficient mice, we show that SLP-8348 uptake is dependent of Mincle. Furthermore, we demonstrate that the SLP-8348-induced activation of BMDCs as well as its adjuvant capacity relies on the presence of Mincle and its signaling adaptor CARD9 on BMDCs, since SLP-8348-activated BMDCs from Mincle-/- or CARD9-/- mice were not capable to enhance OVA-specific response in CD4+ T cells purified from OT-II mice. These findings significantly contribute to the understanding of the role of glycans in the immunomodulation elicited by bacterial SLPs and generate a great opportunity in the search for new adjuvants derived from non-pathogenic microorganisms.


Subject(s)
Immunologic Factors/immunology , Lactobacillus/immunology , Lectins, C-Type/immunology , Membrane Glycoproteins/immunology , Membrane Proteins/immunology , Animals , Humans , Immunologic Factors/genetics , Lactobacillus/genetics , Lectins, C-Type/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , RAW 264.7 Cells
6.
Food Res Int ; 103: 462-467, 2018 01.
Article in English | MEDLINE | ID: mdl-29389636

ABSTRACT

Gastrointestinal conditions along the digestive tract are the main stress to which probiotics administrated orally are exposed because they must survive these adverse conditions and arrive alive to the intestine. Adhesion to epithelium has been considered one of the key criteria for the characterization of probiotics because it extends their residence time in the intestine and as a consequence, can influence the health of the host by modifying the local microbiota or modulating the immune response. Nevertheless, there are very few reports on the adhesion properties to epithelium and mucus of microorganisms after passing through the gastrointestinal tract. In the present work, we evaluate the adhesion ability in vitro of L. paracasei strains isolated from kefir grains after acid and bile stress and we observed that they survive simulated gastrointestinal passage in different levels depending on the strain. L. paracasei CIDCA 8339, 83120 and 83123 were more resistant than L. paracasei CIDCA 83121 and 83124, with a higher susceptibility to simulated gastric conditions. Proteomic analysis of L. paracasei subjected to acid and bile stress revealed that most of the proteins that were positively regulated correspond to the glycolytic pathway enzymes, with an overall effect of stress on the activation of the energy source. Moreover, it is worth to remark that after gastrointestinal passage, L. paracasei strains have increased their ability to adhere to mucin and epithelial cells in vitro being this factor of relevance for maintenance of the strain in the gut environment to exert its probiotic action.


Subject(s)
Bacterial Adhesion , Gastric Juice/metabolism , Intestinal Mucosa/microbiology , Intestinal Secretions/metabolism , Kefir/microbiology , Lacticaseibacillus paracasei/physiology , Mucins/metabolism , Probiotics , Adhesiveness , Bile Acids and Salts/metabolism , Caco-2 Cells , Gastric Acid/metabolism , Humans , Hydrogen-Ion Concentration , Intestinal Mucosa/metabolism , Lacticaseibacillus paracasei/isolation & purification , Lacticaseibacillus paracasei/metabolism , Microbial Viability
7.
Biochem Biophys Res Commun ; 495(1): 1227-1232, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29170125

ABSTRACT

The S-layer is a (glyco)-proteinaceous envelope constituted by self-assembled subunits that form a two-dimensional lattice covering the surface of different species of Bacteria and Archaea. It could be considered as one of the most abundant biopolymers in our planet. Because of their unique self-assembly features, exhibiting repetitive identical physicochemical properties down to the subnanometer scale, as well as their involvement in specific interactions with host cells, the S-layer proteins (SLPs) show a high potential application in different areas of biotechnology, including the development of antigen carriers or new adjuvants. The presence of a glycosylated SLP on potentially probiotic Lactobacillus kefiri strains was previously described by our research group. In this study, we aim to investigate the role of carbohydrates present in the SLP from L. kefiri CIDCA 8348 (SLP-8348) in their internalization by murine macrophages, as well as to analyze their immunomodulatory capacity and their effect on LPS-stimulated macrophages. RAW 264.7 cells internalized the SLP-8348 in a process that was mediated by carbohydrate-receptor interactions since it was inhibited by glucose, mannose or EGTA, a Ca+2 chelating agent. These results correlated with the recognition of SLP-8348 by ConA lectin. We further show that while SLP-8348 was not able to induce the activation of macrophages by itself, it favored the LPS-induced response, since there was a significant increase in the expression of surface cell markers MHC-II, CD86 and CD40, as well as in IL-6 and IL-10 expression at both transcript and protein levels, in comparison with LPS-stimulated cells. The presence of EGTA completely abrogated this synergistic effect. Taken together, these results strongly suggest the involvement of both glycosidic residues and Ca+2 ions in the recognition of SLP-8348 by cellular receptors on murine macrophages. Moreover, these results suggest the potentiality of the SLP-8348 for the development of new adjuvants capable of stimulating antigen presenting cells by interaction with glycan receptors.


Subject(s)
Calcium/immunology , Lactobacillus/metabolism , Lipopolysaccharides/administration & dosage , Macrophage Activation/immunology , Macrophages/immunology , Membrane Glycoproteins/administration & dosage , Animals , Calcium Signaling/drug effects , Calcium Signaling/immunology , Cells, Cultured , Drug Synergism , Lactobacillus/classification , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , RAW 264.7 Cells
8.
Nutrients ; 9(5)2017 May 17.
Article in English | MEDLINE | ID: mdl-28513533

ABSTRACT

Modern lifestyle and diets have been associated with metabolic disorders and an imbalance in the normal gut microbiota. Probiotics are widely known for their health beneficial properties targeting the gut microbial ecosystem. The aim of our study was to evaluate the preventive effect of Lactobacillus kefiri (L. kefiri) administration in a fructose-rich diet (FRD) mice model. Mice were provided with tap water or fructose-added (20% w/v) drinking water supplemented or not with L. kefiri. Results showed that probiotic administration prevented weight gain and epidydimal adipose tissue (EAT) expansion, with partial reversion of the adipocyte hypertrophy developed by FRD. Moreover, the probiotic prevented the increase of plasma triglycerides and leptin, together with the liver triglyceride content. Leptin adipocyte secretion was also improved by L. kefiri, being able to respond to an insulin stimulus. Glucose intolerance was partially prevented by L. kefiri treatment (GTT) and local inflammation (TNFα; IL1ß; IL6 and INFγ) was completely inhibited in EAT. L. kefiri supplementation generated an impact on gut microbiota composition, changing Bacteroidetes and Firmicutes profiles. Overall, our results indicate that the administration of probiotics prevents the deleterious effects of FRD intake and should therefore be promoted to improve metabolic disorders.


Subject(s)
Dietary Carbohydrates/adverse effects , Fructose/adverse effects , Lactobacillus/physiology , Animals , Cytokines/genetics , Cytokines/metabolism , Dietary Carbohydrates/administration & dosage , Energy Intake , Fructose/administration & dosage , Gene Expression Regulation/drug effects , Inflammation/etiology , Kefir/microbiology , Male , Mice , Obesity/complications , Obesity/metabolism , Probiotics , Random Allocation , Weight Gain
9.
Front Immunol ; 8: 88, 2017.
Article in English | MEDLINE | ID: mdl-28239378

ABSTRACT

Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-α/IL-10 and IL-1ß/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1ß, IFN-γ, and CXCL1 gene expression significantly decreased on day 21 in Peyer's patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1ß, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory properties. This strain also modulates gut microbiota increasing Faecalibacterium prausnitzii, a functionally important bacterium. Thus, E. durans EP1 is not only a good candidate to increases F. prausnitzii in some cases of dysbiosis but can also be interesting in gut inflammatory disorders therapy.

10.
Antonie Van Leeuwenhoek ; 110(4): 515-530, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28004217

ABSTRACT

The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial/genetics , Kefir/microbiology , Lactobacillus/metabolism , Membrane Glycoproteins/genetics , Amino Acid Sequence , DNA, Bacterial/genetics , Probiotics , Proteomics
11.
Biomed Res Int ; 2014: 208974, 2014.
Article in English | MEDLINE | ID: mdl-24955346

ABSTRACT

Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or ß-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(-) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 10(8) CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.


Subject(s)
Cultured Milk Products/adverse effects , Lactobacillus/metabolism , Probiotics/administration & dosage , Animals , Cultured Milk Products/microbiology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lactobacillus/pathogenicity , Mice , Microbial Sensitivity Tests , Probiotics/adverse effects
12.
J Dairy Res ; 81(1): 16-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24168928

ABSTRACT

We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.


Subject(s)
Bacterial Adhesion , Gastric Mucosa/microbiology , Intestinal Mucosa/microbiology , Lactobacillus/physiology , Mucus/microbiology , Probiotics , Animals , Bacterial Adhesion/drug effects , Colon , Cultured Milk Products/microbiology , Hexoses/pharmacology , Intestine, Small , Membrane Proteins/pharmacology , Swine
13.
J Med Microbiol ; 62(Pt 12): 1815-1822, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24072759

ABSTRACT

Giardiasis, caused by the protozoan Giardia intestinalis, is one of the most common intestinal diseases worldwide and constitutes an important problem for the public health systems of various countries. Kefir is a probiotic drink obtained by fermenting milk with 'kefir grains', which consist mainly of bacteria and yeasts that coexist in a complex symbiotic association. In this work, we studied the ability of kefir to protect mice from G. intestinalis infection, and characterized the host immune response to this probiotic in the context of the intestinal infection. Six- to 8-week-old C75BL/6 mice were separated into four groups: controls, kefir mice (receiving 1 : 100 dilution of kefir in drinking water for 14 days), Giardia mice (infected orally with 4×10(7) trophozoites of G. intestinalis at day 7) and Giardia-kefir mice (kefir-treated G. intestinalis-infected mice), and killed at 2 or 7 days post-infection. Kefir administration was able to significantly reduce the intensity of Giardia infection at 7 days post-infection. An increase in the percentage of CD4(+) T cells at 2 days post-infection was observed in the Peyer's patches (PP) of mice belonging to the Giardia group compared with the control and kefir groups, while the percentage of CD4(+) T cells in PP in the Giardia-kefir group was similar to that of controls. At 2 days post-infection, a reduction in the percentage of B220-positive major histocompatibility complex class II medium cells in PP was observed in infected mice compared with the other groups. At 7 days post-infection, Giardia-infected mice showed a reduction in RcFcε-positive cells compared with the control group, suggesting a downregulation of the inflammatory response. However, the percentages of RcFcε-positive cells did not differ from controls in the kefir and Giardia-kefir groups. An increase in IgA-positive cells was observed in the lamina propria of the kefir group compared with controls at 2 days post-infection. Interestingly, the diminished number of IgA-positive cells registered in the Giardia group at 7 days post-infection was restored by kefir feeding, although the increase in IgA-positive cells was no longer observed in the kefir group at that time. No significant differences in CXCL10 expression were registered between groups, in concordance with the absence of inflammation in small-intestinal tissue. Interestingly, a slight reduction in CCL20 expression was observed in the Giardia group, suggesting that G. intestinalis might downregulate its expression as a way of evading the inflammatory immune response. On the other hand, a trend towards an increase in TNF-α expression was observed in the kefir group, while the Giardia-kefir group showed a significant increase in TNF-α expression. Moreover, kefir-receiving mice (kefir and Giardia-kefir groups) showed an increase in the expression of IFN-γ, the most relevant Th1 cytokine, at 2 days post-infection. Our results demonstrate that feeding mice with kefir reduces G. intestinalis infection and promotes the activation of different mechanisms of humoral and cellular immunity that are downregulated by parasitic infection, thus contributing to protection.


Subject(s)
Cultured Milk Products/immunology , Fermentation/immunology , Giardia lamblia/immunology , Giardiasis/immunology , Giardiasis/prevention & control , Milk/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemokines/immunology , Chemokines/metabolism , Cultured Milk Products/metabolism , Down-Regulation/immunology , Female , Genes, MHC Class II/immunology , Giardia lamblia/metabolism , Giardiasis/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/prevention & control , Interferon-gamma/immunology , Interferon-gamma/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Milk/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Peyer's Patches/immunology , Peyer's Patches/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
14.
Anaerobe ; 21: 28-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23542116

ABSTRACT

The objective of this work was to test the protective effect of a mixture (MM) constituted by kefir-isolated microorganisms (Lactobacillus plantarum, Lactobacillus kefir, Lc. lactis, Kluyveromyces marxianus and Saccharomyces cerevisiae) in a hamster model of infection with Clostridium difficile, an anaerobic Gram-positive bacterium that causes diarrhoea. Placebo or MM was administered ad libitum in drinking water from day 0 to the end of treatment. Hamsters received orally 200 µg of clyndamicin at day 7 and then were infected with 1 × 10(8) CFU of C. difficile by gavage. Development of diarrhoea and death was registered until the end of the protocol. Surviving animals were sacrificed at day 16, and a test for biological activity of clostridial toxins and histological stainings were performed in caecum samples. Six of seven infected animals developed diarrhoea and 5/7 died at the end of the experimental protocol. The histological sections showed oedema and inflammatory infiltrates with neutrophils and crypt abscesses. In the group of animals infected and treated with MM1/1000, only 1 of 7 hamsters showed diarrhoea and none of them died. The histological sections showed only a slight thickening of the mucosa with presence of lymphocytic infiltrate. These results demonstrate that an oral treatment with a mixture of kefir-isolated bacteria and yeasts was able to prevent diarrhoea and enterocolitis triggered by C. difficile.


Subject(s)
Clostridioides difficile/physiology , Cultured Milk Products/microbiology , Enterocolitis, Pseudomembranous/prevention & control , Kluyveromyces/isolation & purification , Lactobacillus/isolation & purification , Saccharomyces cerevisiae/isolation & purification , Administration, Oral , Animals , Bacterial Toxins/adverse effects , Cecum/microbiology , Cecum/pathology , Cricetinae , Diarrhea/drug therapy , Diarrhea/microbiology , Disease Models, Animal , Enterocolitis, Pseudomembranous/microbiology , Female , Humans , Kluyveromyces/physiology , Lactic Acid/metabolism , Lactobacillus/physiology , Mesocricetus , Saccharomyces cerevisiae/physiology
15.
J Dairy Res ; 80(1): 96-102, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23217732

ABSTRACT

Kefir is a dairy product obtained by fermentation of milk with a complex microbial population and several health-promoting properties have been attributed to its consumption. In this work, we tested the ability of different kefir-isolated bacterial and yeast strains (Lactobacillus kefir, Lb. plantarum, Lactococcus lactis subps. lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) or a mixture of them (MM) to antagonise the cytopathic effect of toxins from Clostridium difficile (TcdA and TcdB). Cell detachment assays and F-actin network staining using Vero cell line were performed. Although incubation with microbial cells did not reduce the damage induced by C. difficile spent culture supernatant (SCS), Lc. lactis CIDCA 8221 and MM supernatants were able to inhibit the cytotoxicity of SCS to Vero cells. Fraction of Lc. lactis CIDCA 8221 supernatant containing components higher than 10 kDa were responsible for the inhibitory activity and heating of this fraction for 15 min at 100 °C completely abrogated this ability. By dot-blot assay with anti-TcdA or anti-TcdB antibodies, concentration of both toxins seems to be reduced in SCS treated with Lc. lactis CIDCA 8221 supernatant. However, protective effect was not affected by treatment with proteases or proteases-inhibitors tested. In conclusion, we demonstrated that kefir-isolated Lc. lactis CIDCA 8221 secreted heat-sensitive products able to protect eukaryotic cells from cytopathic effect of C. difficile toxins in vitro. Our findings provide new insights into the probiotic action of microorganisms isolated from kefir against virulence factors from intestinal pathogens.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Clostridioides difficile/metabolism , Cultured Milk Products/microbiology , Enterotoxins/antagonists & inhibitors , Lactococcus lactis/isolation & purification , Lactococcus lactis/physiology , Animals , Chlorocebus aethiops , Kluyveromyces , Lactobacillus , Probiotics , Saccharomyces cerevisiae , Vero Cells
16.
Anaerobe ; 18(1): 135-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22126976

ABSTRACT

In this work, the ability of S-layer proteins from kefir-isolated Lactobacillus kefir strains to antagonize the cytophatic effects of toxins from Clostridium difficile (TcdA and TcdB) on eukaryotic cells in vitro was tested by cell detachment assay. S-layer proteins from eight different L. kefir strains were able to inhibit the damage induced by C. difficile spent culture supernatant to Vero cells. Besides, same protective effect was observed by F-actin network staining. S-layer proteins from aggregating L. kefir strains (CIDCA 83115, 8321, 8345 and 8348) showed a higher inhibitory ability than those belonging to non-aggregating ones (CIDCA 83111, 83113, JCM 5818 and ATCC 8007), suggesting that differences in the structure could be related to the ability to antagonize the effect of clostridial toxins. Similar results were obtained using purified TcdA and TcdB. Protective effect was not affected by proteases inhibitors or heat treatment, thus indicating that proteolytic activity is not involved. Only preincubation with specific anti-S-layer antibodies significantly reduced the inhibitory effect of S-layer proteins, suggesting that this could be attributed to a direct interaction between clostridial toxins and L. kefir S-layer protein. Interestingly, the interaction of toxins with S-layer carrying bacteria was observed by dot blot and fluorescence microscopy with specific anti-TcdA or anti-TcdB antibodies, although L. kefir cells did not show protective effects. We hypothesize that the interaction between clostridial toxins and soluble S-layer molecules is different from the interaction with S-layer on the surface of the bacteria thus leading a different ability to antagonize cytotoxic effect. This is the first report showing the ability of S-layer proteins from kefir lactobacilli to antagonize biological effects of bacterial toxins. These results encourage further research on the role of bacterial surface molecules to the probiotic properties of L. kefir and could contribute to strain selection with potential therapeutic or prophylactic benefits towards CDAD.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Clostridioides difficile/metabolism , Lactobacillus/metabolism , Membrane Glycoproteins/metabolism , Animals , Antibiosis , Bacterial Toxins/metabolism , Cell Line , Chlorocebus aethiops , Protein Binding
17.
J Dairy Res ; 78(1): 15-22, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20822567

ABSTRACT

The effect of freeze-drying on viability and probiotic properties of a microbial mixture containing selected bacterial and yeast strains isolated from kefir grains (Lactobacillus kefir, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) was studied. The microorganisms were selected according to their potentially probiotic properties in vitro already reported. Two types of formulations were performed, a microbial mixture (MM) suspended in milk and a milk product fermented with MM (FMM). To test the effect of storage on viability of microorganisms, MM and FMM were freeze-dried and maintained at 4°C for six months. After 180 days of storage at 4°C, freeze-dried MM showed better survival rates for each strain than freeze-dried FMM. The addition of sugars (trehalose or sucrose) did not improve the survival rates of any of the microorganisms after freeze-drying. Freeze-drying did not affect the capacity of MM to inhibit growth of Shigella sonnei in vitro, since the co-incubation of this pathogen with freeze-dried MM produced a decrease of 2 log in Shigella viability. The safety of freeze-dried MM was tested in mice and non-translocation of microorganisms to liver or spleen was observed in BALB/c mice feed ad libitum during 7 or 20 days. To our knowledge, this is the first report about the effect of freeze-drying on viability, in vitro probiotic properties and microbial translocation of a mixture containing different strains of both bacteria and yeasts isolated from kefir.


Subject(s)
Cultured Milk Products/microbiology , Freeze Drying , Lactobacillaceae/physiology , Probiotics , Saccharomyces cerevisiae/physiology , Animals , Bacterial Translocation , Female , Fermentation , Kluyveromyces/physiology , Lactobacillus/physiology , Lactobacillus plantarum/physiology , Lactococcus lactis/physiology , Mice , Mice, Inbred BALB C , Milk/microbiology , Shigella/physiology
18.
Antonie Van Leeuwenhoek ; 95(4): 363-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19306111

ABSTRACT

Since the presence of S-layer protein conditioned the autoaggregation capacity of some strains of Lactobacillus kefir, S-layer proteins from aggregating and non-aggregating L. kefir strains were characterized by immunochemical reactivity, MALDI-TOF spectrometry and glycosylation analysis. Two anti-S-layer monoclonal antibodies (Mab5F8 and Mab1F8) were produced; in an indirect enzyme-linked immunosorbent assay Mab1F8 recognized S-layer proteins from all L. kefir tested while Mab5F8 recognized only S-layer proteins from aggregating strains. Periodic Acid-Schiff staining of proteins after polyacrylamide gel electrophoresis under denaturing conditions revealed that all L. kefir S-layer proteins tested were glycosylated. Growth of bacteria in the presence of the N-glycosylation inhibitor tunicamycin suggested the presence of glycosydic chains O-linked to the protein backbone. MALDI-TOF peptide map fingerprint for S-layer proteins from 12 L. kefir strains showed very similar patterns for the aggregating strains, different from those for the non-aggregating ones. No positive match with other protein spectra in MSDB Database was found. Our results revealed a high heterogeneity among S-layer proteins from different L. kefir strains but also suggested a correlation between the structure of these S-layer glycoproteins and the aggregation properties of whole bacterial cells.


Subject(s)
Cultured Milk Products/microbiology , Lactobacillus/chemistry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay , Glycosylation , Lactobacillus/growth & development , Membrane Glycoproteins/isolation & purification , Membrane Glycoproteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...