Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Science ; 384(6695): 563-572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696572

ABSTRACT

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Subject(s)
Aging, Premature , Aging , Brain , Circadian Rhythm , Muscle, Skeletal , Animals , Male , Mice , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Aging, Premature/prevention & control , Brain/physiology , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Homeostasis , Muscle, Skeletal/physiology , Mice, Knockout , ARNTL Transcription Factors/genetics
2.
Nature ; 629(8010): 154-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38649488

ABSTRACT

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Subject(s)
Aging , Muscle, Skeletal , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Aging/genetics , Aging/pathology , Aging/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Disease Susceptibility , Epigenesis, Genetic , Frailty/genetics , Frailty/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Sarcopenia/genetics , Sarcopenia/pathology , Transcriptome
4.
FEBS J ; 290(5): 1161-1185, 2023 03.
Article in English | MEDLINE | ID: mdl-35811491

ABSTRACT

Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.


Subject(s)
Cellular Senescence , Longevity , Cellular Senescence/genetics , Phenotype , Biological Transport
5.
Nature ; 613(7942): 169-178, 2023 01.
Article in English | MEDLINE | ID: mdl-36544018

ABSTRACT

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Subject(s)
Aging , Cellular Senescence , Inflammation , Muscle, Skeletal , Regeneration , Stem Cell Niche , Aged , Animals , Humans , Mice , Aging/metabolism , Aging/physiology , Cellular Senescence/physiology , Inflammation/metabolism , Inflammation/physiopathology , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Stem Cells/physiology , Fibrosis/physiopathology , Stem Cell Niche/physiology , Transcriptome , Chromatin/genetics , Geroscience
7.
Cell Stem Cell ; 29(9): 1298-1314.e10, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35998641

ABSTRACT

Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.


Subject(s)
Mitochondrial Dynamics , Mitophagy , Aged , Humans , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscles/metabolism , Stem Cells/metabolism
8.
Cytometry A ; 101(10): 862-876, 2022 10.
Article in English | MEDLINE | ID: mdl-35608022

ABSTRACT

Autofluorescence (AF) is an intrinsic characteristic of cells caused by the presence of fluorescent biological compounds within the cell; these can include structural proteins (e.g., collagen and elastin), cellular organelles, and metabolites (e.g., aromatic amino acids). In flow cytometric studies, the presence of AF can lead to reduced antigen and population resolution, as well as the presence of artifacts due to false positive events. Here, we describe a methodology that uses the inherent ability of full spectrum cytometry to treat AF as a fluorochrome and to thereby separate it from the other fluorochromes of the assay. This method can be applied to complex inflamed tissues; for instance, in regenerating skeletal muscle we have developed a 16-color panel targeting highly autofluorescent myeloid cells. This represents a first step toward overcoming technological limitations in flow cytometry due to AF.


Subject(s)
Elastin , Fluorescent Dyes , Amino Acids, Aromatic , Flow Cytometry/methods , Muscle, Skeletal , Myeloid Cells
9.
Science ; 374(6565): 355-359, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648328

ABSTRACT

Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.


Subject(s)
Cell Nucleus/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Regeneration , Sarcomeres/physiology , Animals , Calcium/metabolism , Dyneins/metabolism , Mice , Microtubules/metabolism , Muscle Contraction , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure , RNA, Messenger/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism
10.
J Cachexia Sarcopenia Muscle ; 12(6): 1879-1896, 2021 12.
Article in English | MEDLINE | ID: mdl-34704386

ABSTRACT

BACKGROUND: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.


Subject(s)
Frailty , Glucosephosphate Dehydrogenase , Animals , Glucose , Glucose 1-Dehydrogenase , Glucosephosphate Dehydrogenase/genetics , Mice , Muscles
11.
Stem Cell Reports ; 16(9): 2089-2098, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34450038

ABSTRACT

Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , DNA Helicases/genetics , Muscle, Skeletal/physiology , Regeneration , Stem Cells/cytology , Stem Cells/metabolism , Animals , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Biological , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism
12.
Methods Mol Biol ; 2299: 357-370, 2021.
Article in English | MEDLINE | ID: mdl-34028754

ABSTRACT

Fibrosis in skeletal muscle is the natural tissue response to persistent damage and chronic inflammatory states, cursing with altered muscle stem cell regenerative functions and increased activation of fibrogenic mesenchymal stromal cells. Exacerbated deposition of extracellular matrix components is a characteristic feature of human muscular dystrophies, neurodegenerative diseases affecting muscle and aging. The presence of fibrotic tissue not only impedes normal muscle contractile functions but also hampers effective gene and cell therapies. There is a lack of appropriate experimental models to study fibrosis. In this chapter, we highlight recent developments on skeletal muscle fibrosis in mice and expand previously described methods by our group to exacerbate and accelerate fibrosis development in murine muscular dystrophy models and to study the presence of fibrosis in muscle samples. These methods will help understand the molecular and biological mechanisms involved in muscle fibrosis and to identify novel therapeutic strategies to limit the progression of fibrosis in muscular dystrophy.


Subject(s)
Extracellular Matrix/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies/pathology , Animals , Disease Models, Animal , Fibrosis , Humans , Male , Mice , Mice, Inbred mdx , Muscular Dystrophies/genetics , Signal Transduction
13.
Nat Commun ; 11(1): 189, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31929511

ABSTRACT

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Subject(s)
Heat-Shock Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/prevention & control , Nuclear Proteins/metabolism , Signal Transduction , Aging , Animals , Autophagy , Disease Models, Animal , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Gene Expression , Heat-Shock Proteins/genetics , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Nuclear Proteins/genetics , Sarcopenia/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/prevention & control
14.
Dev Cell ; 42(2): 114-116, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28743000

ABSTRACT

Fibro/adipogenic progenitors (FAPs) are emerging as crucial regulators of fibrous and fat deposits during skeletal muscle regeneration. In a recent issue of Cell, Kopinke et al. (2017) report that primary cilia induce the adipogenic fate of FAPs in injured and diseased muscle by restraining Hedgehog signaling.


Subject(s)
Adipocytes , Cilia , Adipogenesis , Cell Differentiation , Humans , Muscle, Skeletal
15.
Cell Metab ; 26(1): 256-266.e4, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683291

ABSTRACT

Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle.


Subject(s)
Glucosyltransferases/metabolism , Glycogen/metabolism , Glycoproteins/metabolism , Muscle, Skeletal/physiology , Animals , Energy Metabolism , Glucosyltransferases/genetics , Glycogen Synthase/metabolism , Glycoproteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Oxygen Consumption
16.
F1000Res ; 6: 76, 2017.
Article in English | MEDLINE | ID: mdl-28163911

ABSTRACT

Adult muscle stem cells, originally called satellite cells, are essential for muscle repair and regeneration throughout life. Besides a gradual loss of mass and function, muscle aging is characterized by a decline in the repair capacity, which blunts muscle recovery after injury in elderly individuals. A major effort has been dedicated in recent years to deciphering the causes of satellite cell dysfunction in aging animals, with the ultimate goal of rejuvenating old satellite cells and improving muscle function in elderly people. This review focuses on the recently identified network of cell-intrinsic and -extrinsic factors and processes contributing to the decline of satellite cells in old animals. Some studies suggest that aging-related satellite-cell decay is mostly caused by age-associated extrinsic environmental changes that could be reversed by a "youthful environment". Others propose a central role for cell-intrinsic mechanisms, some of which are not reversed by environmental changes. We believe that these proposals, far from being antagonistic, are complementary and that both extrinsic and intrinsic factors contribute to muscle stem cell dysfunction during aging-related regenerative decline. The low regenerative potential of old satellite cells may reflect the accumulation of deleterious changes during the life of the cell; some of these changes may be inherent (intrinsic) while others result from the systemic and local environment (extrinsic). The present challenge is to rejuvenate aged satellite cells that have undergone reversible changes to provide a possible approach to improving muscle repair in the elderly.

17.
Semin Cell Dev Biol ; 64: 181-190, 2017 04.
Article in English | MEDLINE | ID: mdl-27670721

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most devastating neuromuscular genetic diseases caused by the absence of dystrophin. The continuous episodes of muscle degeneration and regeneration in dystrophic muscle are accompanied by chronic inflammation and fibrosis deposition, which exacerbate disease progression. Thus, in addition of investigating strategies to cure the primary defect by gene/cell therapeutic strategies, increasing efforts are being placed on identifying the causes of the substitution of muscle by non-functional fibrotic tissue in DMD, aiming to attenuate its severity. Congenital muscular dystrophies (CMDs) are early-onset diseases in which muscle fibrosis is also present. Here we review the emerging findings on the mechanisms that underlie fibrogenesis in muscular dystrophies, and potential anti-fibrotic treatments.


Subject(s)
Muscular Dystrophies/pathology , Translational Research, Biomedical , Age of Onset , Animals , Fibrosis , Humans , Macrophages/pathology , Models, Biological , Muscular Dystrophies/therapy
18.
EMBO J ; 35(15): 1677-93, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27334614

ABSTRACT

Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, analysis of muscle Mfn2-deficient mice revealed that aging-induced Mfn2 decrease underlies the age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to an exacerbated age-related mitochondrial dysfunction. Interestingly, aging-induced Mfn2 deficiency triggers a ROS-dependent adaptive signaling pathway through induction of HIF1α transcription factor and BNIP3. This pathway compensates for the loss of mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that Mfn2 repression in muscle during aging is a determinant for the inhibition of mitophagy and accumulation of damaged mitochondria and triggers the induction of a mitochondrial quality control pathway.


Subject(s)
Aging , Autophagy , GTP Phosphohydrolases/metabolism , Mitophagy , Muscle, Skeletal/pathology , Sarcopenia/pathology , Animals , Mice , Mice, Knockout
19.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738589

ABSTRACT

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Subject(s)
Autophagy/physiology , Cellular Senescence , Satellite Cells, Skeletal Muscle/cytology , Aging/pathology , Animals , Cell Count , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epigenesis, Genetic , Homeostasis , Humans , Male , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Organelles/metabolism , Oxidative Stress , Proteins/metabolism , Reactive Oxygen Species/metabolism , Regeneration , Sarcopenia/pathology , Sarcopenia/prevention & control , Satellite Cells, Skeletal Muscle/pathology
20.
J Alzheimers Dis ; 47(2): 403-12, 2015.
Article in English | MEDLINE | ID: mdl-26401562

ABSTRACT

Fibrinogen has emerged as a promising therapeutic target against Alzheimer's disease because of its dual role in altered vascular function and amyloid-ß aggregation. Here we provide evidence regarding cognitive improvement and reduction of brain parenchyma amyloid-ß deposition in AßPP/PS1 mice after treatment for one month with the fibrinogen-blocking peptide Fibγ377-395. No alteration in glial response or other neuroinflammatory markers was observed in the cortex of treated animals. Considering these results and the fact that Fibγ377-395 does not affect coagulation function, this peptide could be considered as a promising and safe candidate for chronic treatment of Alzheimer's disease.


Subject(s)
Amyloid/drug effects , Cerebral Cortex/drug effects , Cognition/drug effects , Fibrinogen/pharmacology , Neuroimmunomodulation/drug effects , Nootropic Agents/pharmacology , Peptide Fragments/pharmacology , Amyloid/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cognition/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Fibrinogen/metabolism , Male , Mice, Transgenic , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neuroimmunomodulation/physiology , Neuroprotective Agents/pharmacology , Presenilin-1/genetics , Presenilin-1/metabolism , RNA, Messenger/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...