Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Immunohorizons ; 8(1): 114-121, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38276916

ABSTRACT

Sneathia vaginalis is a Gram-negative vaginal species that is associated with pregnancy complications. It produces cytopathogenic toxin A (CptA), a pore-forming toxin. To determine whether CptA is expressed in vivo and to examine the mucosal Ab response to the toxin, we examined human midvaginal swab samples obtained during pregnancy for IgM, IgA, and IgG Abs with CptA affinity. This subcohort study included samples from 93 pregnant people. S. vaginalis relative abundance was available through 16S rRNA survey. There were 22 samples from pregnancies that resulted in preterm birth in which S. vaginalis relative abundance was <0.005%, 22 samples from pregnancies that resulted in preterm birth with S. vaginalis ≥0.005%, 24 samples from pregnancies that resulted in term birth with S. vaginalis <0.005%, and 25 samples from pregnancies that resulted in term birth with S. vaginalis ≥0.005%. IgM, IgA, and IgG with affinity for CptA were assessed by ELISA. The capacity for the samples to neutralize CptA was quantified by hemolysis assay. All three Ab isotypes were detectable within different subsets of the samples. There was no significant association between relative abundance of S. vaginalis and the presence of any Ab isotype. The majority of vaginal swab samples containing detectable levels of anti-CptA Abs neutralized the hemolytic activity of CptA, with the strongest correlation between IgA and neutralizing activity. These results demonstrate that S. vaginalis produces CptA in vivo and that CptA is recognized by the host immune defenses, resulting in the production of Abs with toxin-neutralizing ability.


Subject(s)
Ethylamines , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Antibody Formation , RNA, Ribosomal, 16S , Immunoglobulin G , Immunoglobulin M , Immunoglobulin A
2.
Pathogens ; 12(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38133293

ABSTRACT

The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.

3.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645743

ABSTRACT

Background: The vaginal microbiome (VMB) has been classified into several discrete community state types, some of which have been associated with adverse human health conditions. However, the roles of the many vaginal bacteria in modulating the VMB and health remain unclear. Methods: The associations among the vaginal taxa and other vaginal taxa, the vaginal pH, and the host gene expression responses were determined by calculating the correlation among the relative abundance of the vaginal taxa, the association between the vaginal pH and the predominant taxon in the VMB, and the correlation between the relative abundance of the vaginal taxa and human gene expression at the transcriptional level, respectively. Using these associations, an alternative more informative method, the biological vagitype (BVT), is proposed to classify community state types of the VMB. Findings: Most Lactobacillus spp., with the exception of Lactobacillus iners , show significant correlations with host gene expression profiles and negative associations with dysbiosis-associated vaginal taxa. Many non- Lactobacillus spp. exhibit varied correlations with Lactobacillus spp., the vaginal pH, and host gene expression. Compared to other dysbiotic taxa, including Candidatus Lachnocurva vaginae, Gardnerella vaginalis has a stronger positive correlation with vaginal pH and a stronger negative correlation with Lactobacillus spp. Most dysbiosis-associated taxa are associated with stress responses of the host at the transcriptional level, but the genus Mycoplasma has a uniquely strong positive correlation with host immune responses. The association between BVTs of the VMBs and host characteristics, e.g., race/ethnicity, microbial infection, smoking, antibiotics, high blood pressure, economic state, diet, and others, was examined. The BVT classification method improved overall performance in associating specific vaginal microbial populations with host characteristics and phenotypes. Interpretation: This study sheds light on the biological characteristics of the vaginal microbiota, including some less abundant or still unculturable taxa. Since the BVT method was established based on these biological characteristics, the classification outcome of the VMB may have more clinical relevance. Because the BVT method performs better in associating specific vaginal community types with diseases, e.g., bacterial vaginosis and gonorrhea, it could be beneficial for the predictive modeling of adverse health. Funding: This work was supported by grants [UH3AI083263, U54HD080784, and R01HD092415] from the National Institutes of Health; and support from the [GAPPS BMGF PPB] grant from the Global Alliance to Prevent Prematurity and Stillbirth. We would also like to thank the Office of Research on Women's Health at NIH for their generous support. Research in context: Evidence before this study: The vaginal microbiome (VMB) refers to the community of microorganisms in the female lower reproductive tract. The VMB is often a simple ecosystem dominated by a single species. The most predominant bacteria in the VMB include several Lactobacillus species and two non- Lactobacillus species, i.e., Candidatus Lachnocurva vaginae and Gardnerella vaginalis. Lactobacillus species produce lactic acid to lower the vaginal pH and inhibit the growth of disease-associated bacteria. Thus, the predominance of protective Lactobacilli, i.e., L. crispatus, L. jensenii , and L. gasseri , in the VMB is associated with overall vaginal health. However, the role of L. iners in promoting a healthy vaginal ecosystem is less clear. Actually, the biological and health relevance of many bacteria in the female lower reproductive tract is largely unknown. Some bacteria have low relative abundances, e.g., Peptostreptococcus and Coriobacteriaceae spp.; and others are not yet culturable, e.g., Candidatus Lachnocurva vaginae and BVAB TM7. When abundance of a taxon is low, its association with a host characteristic is a challenge. Previous methods to classify the VMB were based simply on their microbial compositions, and the biological characteristics of the vaginal bacteria were largely ignored. Thus, classification of these VMBs into biologically relevant community types, as described herein, should be helpful in determining their relevance to women's reproductive health. Added value of this study: This study examines three biological characteristics of bacteria in the VMB, i.e., the associations among different bacterial taxa, the vaginal pH, and the host response. Based on these three characteristics, the influence of these bacteria, particularly low abundant and unculturable bacteria, on vaginal health is evaluated. L. iners seems to be neutral in maintaining overall vaginal health. Gardnerella vaginalis is apparently more easily inhibited by Lactobacillus spp. than Candidatus Lachnocurva vaginae because of its stronger positive correlation with vaginal pH and negative correlation with Lactobacillus . The genus of Mycoplasma has a unique positive correlation with local immune responses, implying a role for Mycoplasma in promoting inflammation. Compared with previous methods to classify the VMB, a new method, considering the above three biological characteristics of bacteria in the VMB, has been established. The new method performs better in associating specific vaginal communities with host characteristics and phenotypes; e.g., bacterial vaginosis and gonorrhea. Implications of all the available evidence: Accurate biological classification of the VMB is fundamental for assessing its impact on women's health. Our classification scheme represents a step further toward that correct classification, eventually leading to new strategies for clinical assessment of the potential use of the VMB to diagnose or predict women's reproductive health.

4.
mSystems ; 8(2): e0100322, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36975801

ABSTRACT

Several studies have compared metagenome inference performance in different human body sites; however, none specifically reported on the vaginal microbiome. Findings from other body sites cannot easily be generalized to the vaginal microbiome due to unique features of vaginal microbial ecology, and investigators seeking to use metagenome inference in vaginal microbiome research are "flying blind" with respect to potential bias these methods may introduce into analyses. We compared the performance of PICRUSt2 and Tax4Fun2 using paired 16S rRNA gene amplicon sequencing and whole-metagenome sequencing data from vaginal samples from 72 pregnant individuals enrolled in the Pregnancy, Infection, and Nutrition (PIN) cohort. Participants were selected from those with known birth outcomes and adequate 16S rRNA gene amplicon sequencing data in a case-control design. Cases experienced early preterm birth (<32 weeks of gestation), and controls experienced term birth (37 to 41 weeks of gestation). PICRUSt2 and Tax4Fun2 performed modestly overall (median Spearman correlation coefficients between observed and predicted KEGG ortholog [KO] relative abundances of 0.20 and 0.22, respectively). Both methods performed best among Lactobacillus crispatus-dominated vaginal microbiotas (median Spearman correlation coefficients of 0.24 and 0.25, respectively) and worst among Lactobacillus iners-dominated microbiotas (median Spearman correlation coefficients of 0.06 and 0.11, respectively). The same pattern was observed when evaluating correlations between univariable hypothesis test P values generated with observed and predicted metagenome data. Differential metagenome inference performance across vaginal microbiota community types can be considered differential measurement error, which often causes differential misclassification. As such, metagenome inference will introduce hard-to-predict bias (toward or away from the null) in vaginal microbiome research. IMPORTANCE Compared to taxonomic composition, the functional potential within a bacterial community is more relevant to establishing mechanistic understandings and causal relationships between the microbiome and health outcomes. Metagenome inference attempts to bridge the gap between 16S rRNA gene amplicon sequencing and whole-metagenome sequencing by predicting a microbiome's gene content based on its taxonomic composition and annotated genome sequences of its members. Metagenome inference methods have been evaluated primarily among gut samples, where they appear to perform fairly well. Here, we show that metagenome inference performance is markedly worse for the vaginal microbiome and that performance varies across common vaginal microbiome community types. Because these community types are associated with sexual and reproductive outcomes, differential metagenome inference performance will bias vaginal microbiome studies, obscuring relationships of interest. Results from such studies should be interpreted with substantial caution and the understanding that they may over- or underestimate associations with metagenome content.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Metagenome/genetics , RNA, Ribosomal, 16S/genetics , Premature Birth/genetics , Microbiota/genetics , Vagina/microbiology
5.
J Womens Health (Larchmt) ; 32(5): 553-560, 2023 05.
Article in English | MEDLINE | ID: mdl-36897755

ABSTRACT

Background: The vaginal microbiome (VMB) plays an important role in the persistence of human papillomavirus (HPV) infection and differs by race and among women with cervical intraepithelial neoplasia (CIN). Materials and Methods: We explored these relationships using 16S rRNA VMB taxonomic profiles of 3050 predominantly Black women. VMB profiles were assigned to three subgroups based on taxonomic markers indicative of vaginal wellness: optimal (Lactobacillus crispatus, L. gasseri, and L. jensenii), moderate (L. iners), and suboptimal (Gardnerella vaginalis, Atopobium vaginae, Ca. Lachnocurva vaginae, and others). Multivariable Firth logistic regression models were adjusted for age, smoking, VMB, HPV, and pregnancy status. Results: VMB prevalence by subgroup was 18%, 30%, and 51% for the optimal, moderate, and suboptimal groups, respectively. In fully adjusted models, the risk of CIN grade 3 (CIN3) among non-Latina (nL) Blacks was twice that of nL Whites (odds ratio [OR] = 2.0, 95% confidence interval [CI]: 1.1, 3.9, p = 0.02). The VMB modified this association (p = 0.04) such that the risk of CIN3 was significantly higher for nL Blacks than for nL Whites only among women with optimal VMBs (OR = 7.8, 95% CI: 1.7, 74.5, p = 0.007). Within racial groups, the risk of CIN3 was only elevated among nL White women with suboptimal VMBs (OR = 6.0, 95% CI: 1.3, 56.9, p = 0.02) compared with their racial counterparts with optimal VMBs. Conclusions: Our findings suggest that race is a modifier of the VMB in HPV carcinogenesis. An optimal VMB does not appear to be protective for nL Black women compared with nL White women.


Subject(s)
Microbiota , Papillomavirus Infections , Uterine Cervical Dysplasia , Female , Pregnancy , Humans , RNA, Ribosomal, 16S/genetics , Vagina , Uterine Cervical Dysplasia/epidemiology
6.
Microbiol Mol Biol Rev ; 86(4): e0018121, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36222685

ABSTRACT

The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Reproductive Health , Vagina , Biodiversity
7.
mSystems ; 7(3): e0001722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35582911

ABSTRACT

Previous studies have investigated the associations between the vaginal microbiome and preterm birth, with the aim of determining whether differences in community patterns meaningfully alter risk and could therefore be the target of intervention. We report on vaginal microbial analysis of a nested case-control subset of the Pregnancy, Infection, and Nutrition (PIN) Study, including 464 White women (375 term birth and 89 spontaneous preterm birth, sPTB) and 360 Black women (276 term birth and 84 sPTB). We found that the microbiome of Black women has higher alpha-diversity, higher abundance of Lactobacillus iners, and lower abundance of Lactobacillus crispatus. However, among women who douche, there were no significant differences in microbiome by race. The sPTB-associated microbiome exhibited a lower abundance of L. crispatus, while alpha diversity and L. iners were not significantly associated with sPTB. For each order of magnitude increase in the normalized relative abundance of L. crispatus, multivariable adjusted odds of sPTB decreased by approximately 20% (odds ratio, 0.81; 95% confidence interval, 0.70, 0.94). When we considered the impact of douching, associations between the microbiome and sPTB were limited to women who do not douche. We also observed strong intercorrelations between a range of maternal factors, including poverty, education, marital status, age, douching, and race, with microbiome effect sizes in the range of 1.8 to 5.2% in univariate models. Therefore, race may simply be a proxy for other socially driven factors that differentiate microbiome community structures. Future work will continue to refine reliable microbial biomarkers for preterm birth across diverse cohorts. IMPORTANCE Approximately 10% of all pregnancies in the United States end in preterm birth, and over 14% of pregnancies end in preterm birth among Black women. Knowledge on the associations between vaginal microbiome and preterm birth is important for understanding the potential cause and assessing risk of preterm birth. Our study is one of the largest studies performed to date to investigate the associations between vaginal microbiome and spontaneous preterm birth (sPTB), with stratified design for Black and White women. We found that the vaginal microbiome was different between Black and White women. The vaginal microbiome was associated with sPTB, and a lower abundance of L. crispatus increased the risk of sPTB independent of racial differences in microbial community structures. Furthermore, we also found that vaginal douching obscured the associations between vaginal microbiome, race, and preterm birth, suggesting that vaginal douching is an important factor to consider in future studies.


Subject(s)
Lactobacillus crispatus , Microbiota , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , United States , Premature Birth/etiology , Vagina , Black People
8.
Pediatr Pulmonol ; 57(2): 508-518, 2022 02.
Article in English | MEDLINE | ID: mdl-34811963

ABSTRACT

BACKGROUND: Little is known about the airway microbiome in intubated mechanically ventilated children. We sought to characterize the airway microbiome longitudinally and in association with clinical variables and possible ventilator-associated infection (VAI). METHODS: Serial tracheal aspirate samples were prospectively obtained from mechanically ventilated subjects under 3 years old from eight pediatric intensive care units in the United States from June 2017 to July 2018. Changes in the tracheal microbiome were analyzed by sequencing bacterial 16S ribosomal RNA gene relative to subject demographics, diagnoses, clinical parameters, outcomes, antibiotic treatment, and the Ventilator-Associated InfectioN (VAIN) score. RESULTS: A total of 221 samples from 58 patients were processed and 197 samples met the >1000 reads criteria (89%), with an average of 43,000 reads per sample. The median number of samples per subject was 3 (interquartile range [IQR]: 2-5), with a median VAIN score of 2 (IQR: 1-3). Proteobacteria was the highest observed phyla throughout the intubation period, followed by Firmicutes and Actinobacteria. Alpha diversity was negatively associated with days of intubation (p = .032) and VAIN score (p = .016). High VAIN scores were associated with a decrease of Mycobacterium obuense, and an increase of Streptococcus peroris, Porphyromonadaceae family (unclassified species), Veillonella atypica, and several other taxa. No specific pattern of microbiome composition related to clinically diagnosed VAIs was observed. CONCLUSIONS: Our data demonstrate decreasing alpha diversity with increasing VAIN score and days of intubation. No specific microbiome pattern was associated with clinically diagnosed VAI.


Subject(s)
Microbiota , Pneumonia, Ventilator-Associated , Child , Child, Preschool , Humans , Microbiota/genetics , Pneumonia, Ventilator-Associated/diagnosis , Respiration, Artificial , Trachea/microbiology , United States , Ventilators, Mechanical
9.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34898422

ABSTRACT

The composition of the human vaginal microbiome has been extensively studied and is known to influence reproductive health. However, the functional roles of individual taxa and their contributions to negative health outcomes have yet to be well characterized. Here, we examine two vaginal bacterial taxa grouped within the genus Megasphaera that have been previously associated with bacterial vaginosis (BV) and pregnancy complications. Phylogenetic analyses support the classification of these taxa as two distinct species. These two phylotypes, Megasphaera phylotype 1 (MP1) and Megasphaera phylotype 2 (MP2), differ in genomic structure and metabolic potential, suggestive of differential roles within the vaginal environment. Further, these vaginal taxa show evidence of genome reduction and changes in DNA base composition, which may be common features of host dependence and/or adaptation to the vaginal environment. In a cohort of 3870 women, we observed that MP1 has a stronger positive association with bacterial vaginosis whereas MP2 was positively associated with trichomoniasis. MP1, in contrast to MP2 and other common BV-associated organisms, was not significantly excluded in pregnancy. In a cohort of 52 pregnant women, MP1 was both present and transcriptionally active in 75.4 % of vaginal samples. Conversely, MP2 was largely absent in the pregnant cohort. This study provides insight into the evolutionary history, genomic potential and predicted functional role of two clinically relevant vaginal microbial taxa.


Subject(s)
Bacterial Proteins/genetics , Megasphaera/classification , Sequence Analysis, DNA/methods , Vagina/microbiology , Vaginosis, Bacterial/epidemiology , Base Composition , Case-Control Studies , Evolution, Molecular , Female , Gene Expression Regulation, Bacterial , Genome Size , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Humans , Megasphaera/genetics , Megasphaera/isolation & purification , Megasphaera/metabolism , Phylogeny , Pregnancy , RNA, Ribosomal, 16S/genetics , Reproductive Health , Vaginosis, Bacterial/microbiology
10.
Commun Biol ; 4(1): 872, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354222

ABSTRACT

The diversity and dominant bacterial taxa in the vagina are reported to be influenced by multiple intrinsic and extrinsic factors, including but not limited to pregnancy, contraceptive use, pathogenic states, socioeconomic status, and ancestry. However, the extent to which host genetic factors influence variation in the vaginal microbiota is unclear. We used a biometrical genetic approach to determine whether host genetic factors contribute to inter-individual differences in taxa from a sample of 332 twins who self-identified as being of African (44 pairs) or European ancestry (122 pairs). Lactobacillus crispatus, a major determinant of vaginal health, was identified as heritable among European American women (narrow-sense heritability = 34.7%, P-value = 0.018). Heritability of L. crispatus is consistent with the reduced prevalence of adverse reproductive disorders, including bacterial vaginosis and preterm birth, among women of European ancestry.


Subject(s)
Black or African American/statistics & numerical data , Heredity , Lactobacillus crispatus/physiology , Microbiota , Vagina/microbiology , White People/statistics & numerical data , Adult , Aged , Female , Humans , Middle Aged , Virginia , Young Adult
11.
Pathogens ; 10(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200026

ABSTRACT

Trypanosomatids of the subfamily Strigomonadinae bear permanent intracellular bacterial symbionts acquired by the common ancestor of these flagellates. However, the cospeciation pattern inherent to such relationships was revealed to be broken upon the description of Angomonas ambiguus, which is sister to A. desouzai, but bears an endosymbiont genetically close to that of A. deanei. Based on phylogenetic inferences, it was proposed that the bacterium from A. deanei had been horizontally transferred to A. ambiguus. Here, we sequenced the bacterial genomes from two A. ambiguus isolates, including a new one from Papua New Guinea, and compared them with the published genome of the A. deanei endosymbiont, revealing differences below the interspecific level. Our phylogenetic analyses confirmed that the endosymbionts of A. ambiguus were obtained from A. deanei and, in addition, demonstrated that this occurred more than once. We propose that coinfection of the same blowfly host and the phylogenetic relatedness of the trypanosomatids facilitate such transitions, whereas the drastic difference in the occurrence of the two trypanosomatid species determines the observed direction of this process. This phenomenon is analogous to organelle (mitochondrion/plastid) capture described in multicellular organisms and, thereafter, we name it endosymbiont capture.

12.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34185704

ABSTRACT

Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here, we report that elevated IL-13 was associated with the need for mechanical ventilation in 2 independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab, a mAb that blocks IL-13 and IL-4 signaling, had less severe disease. In SARS-CoV-2-infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, hyaluronan synthase 1 (Has1) was the most downregulated gene, and accumulation of the hyaluronan (HA) polysaccharide was decreased in the lung. In patients with COVID-19, HA was increased in the lungs and plasma. Blockade of the HA receptor, CD44, reduced mortality in infected mice, supporting the importance of HA as a pathogenic mediator. Finally, HA was directly induced in the lungs of mice by administration of IL-13, indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and HA has important implications for therapy of COVID-19 and, potentially, other pulmonary diseases. IL-13 levels were elevated in patients with severe COVID-19. In a mouse model of the disease, IL-13 neutralization reduced the disease and decreased lung HA deposition. Administration of IL-13-induced HA in the lung. Blockade of the HA receptor CD44 prevented mortality, highlighting a potentially novel mechanism for IL-13-mediated HA synthesis in pulmonary pathology.


Subject(s)
COVID-19/immunology , Interleukin-13/immunology , SARS-CoV-2/immunology , Animals , COVID-19/blood , COVID-19/pathology , COVID-19/therapy , Disease Models, Animal , Disease Progression , Female , Humans , Interleukin-13/blood , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Severity of Illness Index
13.
medRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33688686

ABSTRACT

Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here we report that elevated interleukin-13 (IL-13) was associated with the need for mechanical ventilation in two independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab had less severe disease. In SARS-CoV-2 infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, in the lung, hyaluronan synthase 1 (Has1) was the most downregulated gene and hyaluronan accumulation was decreased. Blockade of the hyaluronan receptor, CD44, reduced mortality in infected mice, supporting the importance of hyaluronan as a pathogenic mediator, and indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and hyaluronan has important implications for therapy of COVID-19 and potentially other pulmonary diseases.

14.
Pathogens ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498226

ABSTRACT

Gardnerella vaginalis has recently been split into 13 distinct species. In this study, we tested the hypotheses that species-specific variations in the vaginolysin (VLY) amino acid sequence could influence the interaction between the toxin and vaginal epithelial cells and that VLY variation may be one factor that distinguishes less virulent or commensal strains from more virulent strains. This was assessed by bioinformatic analyses of publicly available Gardnerella spp. sequences and quantification of cytotoxicity and cytokine production from purified, recombinantly produced versions of VLY. After identifying conserved differences that could distinguish distinct VLY types, we analyzed metagenomic data from a cohort of female subjects from the Vaginal Human Microbiome Project to investigate whether these different VLY types exhibited any significant associations with symptoms or Gardnerella spp.-relative abundance in vaginal swab samples. While Type 1 VLY was most prevalent among the subjects and may be associated with increased reports of symptoms, subjects with Type 2 VLY dominant profiles exhibited increased relative Gardnerella spp. abundance. Our findings suggest that amino acid differences alter the interaction of VLY with vaginal keratinocytes, which may potentiate differences in bacterial vaginosis (BV) immunopathology in vivo.

15.
J Infect Dis ; 220(5): 852-861, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31111902

ABSTRACT

BACKGROUND: Mechanisms linking herpes simplex virus type 2 (HSV-2) with human immunodeficiency virus (HIV) are not fully defined. We tested the hypothesis that HSV-2 and HIV dual infection is associated with cervicovaginal inflammation and/or vaginal dysbiosis. METHODS: Genital tract samples were obtained weekly over a 12-week period from 30 women seropositive (+) for HIV and HSV-2 and 15 women each who were seropositive for one or seronegative (-) for both viruses. Immune mediators, antimicrobial activity, and microbial composition and diversity were compared. RESULTS: Significant differences in the concentrations of interferon-γ (P = .002), tumor necrosis factor-α (P = .03), human beta defensin 1 (P = .001), secretory leukocyte protease inhibitor (P = .01), and lysozyme (P = .03) were observed across the 4 groups (Kruskal-Wallis). There were also significant differences in vaginal microbial alpha diversity (Simpson index) (P = .0046). Specifically, when comparing HIV-1+/HSV-2+ to HIV-1-/HSV-2- women, a decrease in Lactobacillus crispatus and increase in diverse anaerobes was observed. The number of genital HSV outbreaks was greater in HIV+ versus HIV- women (39 versus 12) (P = .04), but there were no significant differences when comparing outbreak to non-outbreak visits. CONCLUSIONS: Increased microbial diversity and cervicovaginal inflammation in HIV and HSV-2 dually infected women may adversely impact genital health and, in the absence of antiretroviral therapy, facilitate HIV shedding.


Subject(s)
Genitalia, Female/microbiology , HIV Infections/complications , Herpes Genitalis/immunology , Herpesvirus 2, Human/immunology , Immunity, Mucosal/immunology , Microbiota/physiology , Vagina/microbiology , Adult , Anti-Infective Agents/pharmacology , Coinfection/virology , Dysbiosis , Female , Herpes Genitalis/epidemiology , Herpes Genitalis/virology , Humans , Interferon-gamma , Lactobacillus , Middle Aged , Muramidase , Secretory Leukocyte Peptidase Inhibitor , Tumor Necrosis Factor-alpha , Vagina/virology , Virus Shedding , beta-Defensins
16.
Nat Med ; 25(6): 1012-1021, 2019 06.
Article in English | MEDLINE | ID: mdl-31142849

ABSTRACT

The incidence of preterm birth exceeds 10% worldwide. There are significant disparities in the frequency of preterm birth among populations within countries, and women of African ancestry disproportionately bear the burden of risk in the United States. In the present study, we report a community resource that includes 'omics' data from approximately 12,000 samples as part of the integrative Human Microbiome Project. Longitudinal analyses of 16S ribosomal RNA, metagenomic, metatranscriptomic and cytokine profiles from 45 preterm and 90 term birth controls identified harbingers of preterm birth in this cohort of women predominantly of African ancestry. Women who delivered preterm exhibited significantly lower vaginal levels of Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii, TM7-H1, a group of Prevotella species and nine additional taxa. The first representative genomes of BVAB1 and TM7-H1 are described. Preterm-birth-associated taxa were correlated with proinflammatory cytokines in vaginal fluid. These findings highlight new opportunities for assessment of the risk of preterm birth.


Subject(s)
Microbiota , Premature Birth/microbiology , Vagina/microbiology , Adult , Black or African American , Biodiversity , Cohort Studies , Cytokines/metabolism , Female , Host Microbial Interactions/immunology , Humans , Infant, Newborn , Inflammation Mediators/metabolism , Longitudinal Studies , Metagenomics , Microbiota/genetics , Microbiota/immunology , Premature Birth/etiology , Premature Birth/immunology , Risk Factors , United States , Vagina/immunology , Young Adult
17.
Nat Med ; 25(6): 1001-1011, 2019 06.
Article in English | MEDLINE | ID: mdl-31142850

ABSTRACT

The microbiome of the female reproductive tract has implications for women's reproductive health. We examined the vaginal microbiome in two cohorts of women who experienced normal term births: a cross-sectionally sampled cohort of 613 pregnant and 1,969 non-pregnant women, focusing on 300 pregnant and 300 non-pregnant women of African, Hispanic or European ancestry case-matched for race, gestational age and household income; and a longitudinally sampled cohort of 90 pregnant women of African or non-African ancestry. In these women, the vaginal microbiome shifted during pregnancy toward Lactobacillus-dominated profiles at the expense of taxa often associated with vaginal dysbiosis. The shifts occurred early in pregnancy, followed predictable patterns, were associated with simplification of the metabolic capacity of the microbiome and were significant only in women of African or Hispanic ancestry. Both genomic and environmental factors are likely contributors to these trends, with socioeconomic status as a likely environmental influence.


Subject(s)
Microbiota , Pregnancy/physiology , Vagina/microbiology , Adult , Black or African American , Biodiversity , Cohort Studies , Cross-Sectional Studies , Female , Hispanic or Latino , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Microbiota/genetics , Microbiota/physiology , Social Class , White People
18.
J Perinatol ; 39(6): 824-836, 2019 06.
Article in English | MEDLINE | ID: mdl-30858609

ABSTRACT

OBJECTIVE: Evidence supports an inverse association between vitamin D and bacterial vaginosis (BV) during pregnancy. Furthermore, both the vaginal microbiome and vitamin D status correlate with pregnancy outcome. Women of African ancestry are more likely to experience BV, to be vitamin D deficient, and to have certain pregnancy complications. We investigated the association between vitamin D status and the vaginal microbiome. STUDY DESIGN: Subjects were assigned to a treatment (4400 IU) or a control group (400 IU vitamin D daily), sampled three times during pregnancy, and vaginal 16S rRNA gene taxonomic profiles and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were examined. RESULT: Gestational age and ethnicity were significantly associated with the microbiome. Megasphaera correlated negatively (p = 0.0187) with 25(OH)D among women of African ancestry. Among controls, women of European ancestry exhibited a positive correlation between plasma 25(OH)D and L. crispatus abundance. CONCLUSION: Certain vaginal bacteria are associated with plasma 25(OH)D concentration.


Subject(s)
Microbiota , Vagina/microbiology , Vitamin D/analogs & derivatives , Adolescent , Adult , Female , Gestational Age , Humans , Pregnancy , Vaginosis, Bacterial/ethnology , Vitamin D/administration & dosage , Vitamin D/blood , Vitamins/administration & dosage
19.
Sci Rep ; 8(1): 14752, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30283097

ABSTRACT

A mechanistic link between trimethylamine N-oxide (TMAO) and atherogenesis has been reported. TMAO is generated enzymatically in the liver by the oxidation of trimethylamine (TMA), which is produced from dietary choline, carnitine and betaine by gut bacteria. It is known that certain members of methanogenic archaea (MA) could use methylated amines such as trimethylamine as growth substrates in culture. Therefore, we investigated the efficacy of gut colonization with MA on lowering plasma TMAO concentrations. Initially, we screened for the colonization potential and TMAO lowering efficacy of five MA species in C57BL/6 mice fed with high choline/TMA supplemented diet, and found out that all five species could colonize and lover plasma TMAO levels, although with different efficacies. The top performing MA, Methanobrevibacter smithii, Methanosarcina mazei, and Methanomicrococcus blatticola, were transplanted into Apoe-/- mice fed with high choline/TMA supplemented diet. Similar to C57BL/6 mice, following initial provision of the MA, there was progressive attrition of MA within fecal microbial communities post-transplantation during the initial 3 weeks of the study. In general, plasma TMAO concentrations decreased significantly in proportion to the level of MA colonization. In a subsequent experiment, use of antibiotics and repeated transplantation of Apoe-/- mice with M. smithii, led to high engraftment levels during the 9 weeks of the study, resulting in a sustained and significantly lower average plasma TMAO concentrations (18.2 ± 19.6 µM) compared to that in mock-transplanted control mice (120.8 ± 13.0 µM, p < 0.001). Compared to control Apoe-/- mice, M. smithii-colonized mice also had a 44% decrease in aortic plaque area (8,570 µm [95% CI 19587-151821] vs. 15,369 µm [95% CI [70058-237321], p = 0.34), and 52% reduction in the fat content in the atherosclerotic plaques (14,283 µm [95% CI 4,957-23,608] vs. 29,870 µm [95% CI 18,074-41,666], p = 0.10), although these differences did not reach significance. Gut colonization with M. smithii leads to a significant reduction in plasma TMAO levels, with a tendency for attenuation of atherosclerosis burden in Apoe-/- mice. The anti-atherogenic potential of MA should be further tested in adequately powered experiments.


Subject(s)
Apolipoproteins E/drug effects , Atherosclerosis/prevention & control , Gastrointestinal Microbiome/physiology , Methanobrevibacter/metabolism , Methanosarcina/metabolism , Methylamines/blood , Plaque, Atherosclerotic/prevention & control , Administration, Oral , Animals , Aorta/metabolism , Aorta/microbiology , Aorta/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/microbiology , Choline/administration & dosage , Choline/metabolism , Dietary Supplements , Feces/microbiology , Female , Methane/metabolism , Methanobrevibacter/growth & development , Methanosarcina/growth & development , Methylamines/administration & dosage , Methylamines/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbial Consortia/physiology , Plaque, Atherosclerotic/microbiology
20.
BMC Genomics ; 19(1): 770, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30355302

ABSTRACT

BACKGROUND: Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. RESULTS: Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21-25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. CONCLUSIONS: Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids.


Subject(s)
Genome, Protozoan , Genomics , Trypanosoma cruzi/genetics , Trypanosoma rangeli/genetics , Trypanosoma/genetics , Computational Biology/methods , Energy Metabolism/genetics , Genomics/methods , Genotype , Molecular Typing , Multigene Family , Phylogeny , Pseudogenes , Trypanosoma/classification , Trypanosoma/metabolism , Trypanosoma/pathogenicity , Trypanosoma cruzi/classification , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/pathogenicity , Trypanosoma rangeli/classification , Trypanosoma rangeli/metabolism , Trypanosoma rangeli/pathogenicity , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...