Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Cell ; 115(4): e2200085, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36597754

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) is an intracellular pathogen whose replication cycle strictly depends on the host cell molecular machinery. HIV-1 crosses twice the plasma membrane, to get in and to get out of the cell. Therefore, the first and the last line of intracellular component encountered by the virus is the cortical actin network. Here, we review the role of actin and actin-related proteins in HIV-1 entry, assembly, budding, and release. We first highlight the mechanisms controlling actin polymerization at the entry site that promote the clustering of HIV-1 receptors, a crucial step for the virus to fuse with the plasma membrane. Then, we describe how actin is transiently depolymerized locally to allow the capsid to cross the actin cortex, before migrating towards the nucleus. Finally, we review the role of several actin-binding proteins in actin remodeling events required for membrane deformation and curvature at the viral assembly site as well as for virus release. Strikingly, it appears that common actin-regulating pathways are involved in viral entry and exit. However, while the role of actin remodeling during entry is well understood, this is not the case during exit. We discuss remaining challenges regarding the actin-dependent mechanisms involved in HIV-1 entry and exit, and how they could be overcome.


Subject(s)
Actins , HIV-1 , Humans , Actins/metabolism , HIV-1/physiology , Actin Cytoskeleton/metabolism , Cell Line , Cell Membrane/metabolism
2.
Eur J Cell Biol ; 101(3): 151249, 2022.
Article in English | MEDLINE | ID: mdl-35716426

ABSTRACT

Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.


Subject(s)
Actin Cytoskeleton , Actins , Actin Cytoskeleton/metabolism , Actins/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Microfilament Proteins/metabolism , Oxidation-Reduction
3.
Stem Cell Rev Rep ; 17(1): 296-299, 2021 02.
Article in English | MEDLINE | ID: mdl-33403488

ABSTRACT

We report the case of an HIV-1-infected patient, treated with anti-CD20 monoclonal antibody for a B-cell lymphoma previously treated by autologous stem cell transplant. He suffered from chronic COVID19 and we monitored by plasma SARS-CoV-2 RNA by highly sensitive droplet-based digital PCR technology (ddPCR). Under tocilizumab therapy and despite a first clinical improvement biologically associated with decreasing inflammatory markers, a slight increase of SARS-CoV-2 RNAaemia quantified by ddPCR was highlighted, confirming the absence of viral efficacy of this treatment and predicting the subsequent observed deterioration. As expected, his complete recovery, finally achieved after COVID-19 convalescent plasmatherapy, strictly paralleled plasma SARS-CoV-2 RNA clearance. With these results, we confirmed the interest of SARS-CoV-2 RNAaemia monitoring by ddPCR in COVID-19 patients, particularly during treatment, and firstly showed that this new and specific biomarker could be helpful to select eligible patient for anti-IL6 receptors therapy considering the variable levels of efficacy recently observed with such therapy.


Subject(s)
COVID-19/blood , HIV Infections/blood , Lymphoma, B-Cell/drug therapy , RNA, Viral/blood , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , COVID-19/genetics , COVID-19/virology , HIV Infections/genetics , HIV Infections/therapy , HIV Infections/virology , HIV-1/pathogenicity , Humans , Lymphocytes/virology , Lymphoma, B-Cell/complications , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/virology , RNA, Viral/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...