Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(3): 135, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355771

ABSTRACT

A highly sensitive electrochemical sensor is reported that employs a modified electrode for the precise measurement of cabotegravir, a potent anti-HIV drug. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were utilized for this purpose. Electrode modification involved the immobilization of Cr2AlC MAX phase/g-C3N4 onto a glassy carbon electrode (GCE) to enhance its electrocatalytic activity and selectivity for cabotegravir detection. Under the optimal experimental conditions, the working potential (vs. Ag/AgCl) was to 0.93 V. The developed sensor exhibited a good linear relationship in the range 0.05 µM to 9.34 µM with a low limit of detection of 4.33 nM, signifying its exceptional sensitivity. Additionally, it demonstrated successful cabotegravir detection in pharmaceutical formulations and biological samples, achieving an RSD below 3.0%. The recoveries fell within the range 97.7 to 102%, confirming the sensor's potential for real-sample applications. This innovative electrochemical sensor represents a significant advancement, providing a simple, reliable, and sensitive tool for the accurate measurement of cabotegravir. Its potential applications include optimizing drug dosages, monitoring treatment responses, and supporting the development of cabotegravir-based pharmaceutical products, thereby contributing to advancements in HIV therapy and prevention strategies.


Subject(s)
Carbon , Diketopiperazines , Electrochemical Techniques , Pyridones , Electrochemical Techniques/methods , Limit of Detection , Carbon/chemistry , Pharmaceutical Preparations
2.
Water Sci Technol ; 88(6): 1417-1427, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768745

ABSTRACT

Membrane fouling is a serious handicap of membrane-based separation, as it reduces permeation flux and hence increases operational and maintenance expenses. Polyurethane-paraffin wax (PU/PW) nanocapsules were integrated into the polyethersulfone membrane to manufacture a composite membrane with higher antifouling and permeability performance against humic acid (HA) and bovine serum albumin (BSA) foulants. All manufactured membranes were characterized by scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and contact angle. The contact angle of the pristine polyethersulfone (PES) membrane was measured 73.40 ± 1.32. With the embedding of nanocapsules, the contact angle decreased to 64.55 ± 1.23 for PES/PU/PW 2.0 wt%, and the pure water flux of all composite membranes increased when compared to pristine PES. The pristine PES membrane also has shown the lowest steady-state fluxes at 45.84 and 46.59 L/m2h for BSA and HA, respectively. With the increase of PU/PW nanocapsule ratio from 0.5 to 1.0 wt%, steady-state fluxes increased from 51.96 to 71.61 and from 67.87 to 98.73 L/m2h, respectively, for BSA and HA. The results depicted that BSA and HA rejection efficiencies of PU/PW nanocapsules blended PES membranes increased when compared to pristine PES membranes.


Subject(s)
Humic Substances , Nanocapsules , Paraffin , Polyurethanes , Serum Albumin, Bovine
3.
Biomed Mater ; 17(6)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36137521

ABSTRACT

The antimicrobial properties of scaffolds designed for use in wound healing are accepted as an important factor in the healing process to accelerate the wound healing process without causing inflammation. For this purpose, chitosan-polyvinyl alcohol composite membranes loaded with Cu2ZnSnSe4quantum dots (CZTSe QDs) as an antibacterial and cytocompatible biomaterial to regulate the wound healing process were produced. CZTSe QDs particles were synthesized under hydrothermal conditions. Polymer-based nanocomposites with different concentrations of the synthesized nanoparticles were produced by the solvent casting method. After detailed physicochemical and morphological characterizations of CZTSe QDs and composite membranes, antibacterial activities and cell viability were extensively investigated against gram-positive and gram-negative bacterial and yeast strains, and L929 mouse fibroblast cells lines, respectively. The results show that the preparation of composite scaffolds at a QDs concentration of 3.3% by weight has the best antimicrobial activity. Composite scaffold membranes, which can be obtained as a result of an easy production process, are thought to have great potential applications in tissue engineering as wound dressing material due to their high mechanical properties, wettability, strong antibacterial properties and non-toxicity.


Subject(s)
Anti-Infective Agents , Chitosan , Nanocomposites , Quantum Dots , Animals , Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Chitosan/chemistry , Mice , Nanocomposites/chemistry , Polymers , Polyvinyl Alcohol/chemistry , Solvents
4.
Colloids Surf B Biointerfaces ; 205: 111867, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120090

ABSTRACT

This study aims to investigate the modification of polyethersulfone (PES) membrane with boron nitride quantum dots (BNQD) for improving the antifouling performance. The composite membranes were synthesized by blending different amounts of BNQD (0.50, 1.00, and 2.00 wt.%) into PES with the non-solvent induced phase separation (NIPS) method. UV-vis absorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize BNQD. Moreover, porosity, pore size, contact angle, permeability, bovine serum albumin (BSA) rejection, and antifouling properties were determined for composite membranes. The enhanced biological activity of BNQD was investigated based on antioxidant, antimicrobial, anti-biofilm, bacterial viability inhibition, and DNA cleavage studies. The BNQD showed 19.35 % DPPH radical scavenging activity and 76.45 % ferrous ion chelating activity at 500 mg/L. They also exhibited good chemical nuclease activity at all concentrations. BNQD had moderate antibacterial activity against all tested microorganisms. Biofilm inhibition percentage of BNQD was determined as 82.31 % at 500 mg/L. Cell viability assay demonstrated that the BNQD showed strong cell viability inhibition 99.9 % at the concentration of 1000 mg/L. The porosity increased from 56.83 ± 1.17%-61.83 ± 1.17 % while BNQD concentration increased from 0 to 2.00 wt%. Moreover, the hydrophilicity of BNQD nanocomposite membranes also increased from 75.42 ± 0.56° to 65.34 ± 0.25°. The mean pore radius is far slightly changed from 16.47 ± 0.35 nm to 19.16 ± 0.22 nm. The water flux increased from 133.5 ± 9.5 L/m2/h (for pristine membrane) to 388.6 ± 18.8 L/m2/h (for PES/BNQD 2.00 wt% membrane). BSA flux increased from 38.8 ± 0.9 L/m2/h to 63.2 ± 2.7 L/m2/h up to 1.00 wt% amount of BNQD nanoparticles.


Subject(s)
Biofouling , Quantum Dots , Biofouling/prevention & control , Boron Compounds , Membranes, Artificial , Polymers , Sulfones , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...