Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(5): 830-841, 2023 05.
Article in English | MEDLINE | ID: mdl-37377900

ABSTRACT

Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance: We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.


Subject(s)
Carcinosarcoma , Ovarian Neoplasms , Sarcoma , Humans , Female , Carcinosarcoma/genetics , Ovarian Neoplasms/genetics
2.
J Natl Cancer Inst ; 114(8): 1159-1166, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35511172

ABSTRACT

BACKGROUND: Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. METHODS: To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. RESULTS: The GWAx-GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. CONCLUSIONS: This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development.


Subject(s)
Genome-Wide Association Study , Lung Neoplasms , Genetic Predisposition to Disease , Germ Cells/pathology , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Polymorphism, Single Nucleotide
3.
Nat Commun ; 11(1): 3431, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647202

ABSTRACT

Claudin-low breast cancers are aggressive tumors defined by the low expression of key components of cellular junctions, associated with mesenchymal and stemness features. Although they are generally considered as the most primitive breast malignancies, their histogenesis remains elusive. Here we show that this molecular subtype of breast cancers exhibits a significant diversity, comprising three main subgroups that emerge from unique evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast cancers through the activation of an EMT process over the course of tumor progression. The third subgroup is closely related to normal human mammary stem cells. This unique subgroup of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53 mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin constitute a major determinant of the genetic history of tumorigenesis.


Subject(s)
Breast Neoplasms/metabolism , Claudins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Differentiation , Cell Line, Tumor , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Genome, Human , Humans , Ploidies , Signal Transduction/genetics
4.
Eur Urol ; 75(1): 11-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30245085

ABSTRACT

Causes of high mortality of prostate cancer in men of African ancestry living in the French West Indies are still debated, between suspicions of environmental factors and genetic susceptibility. We report an integrated genomic study of 25 tumour tissues from radical prostatectomy of aggressive (defined by International Society of Urological Pathology ≥3) prostate cancer patients (10 African Caribbean and 15 French Caucasian) using single nucleotide polymorphism arrays, whole-genome sequencing, and RNA sequencing. The results show that African Caribbean tumours are characterised by a more frequent deletion at 1q41-43 encompassing the DNA repair gene PARP1, and a higher proportion of intrachromosomal rearrangements including duplications associated with CDK12 truncating mutations. Transcriptome analyses show an overexpression of genes related to androgen receptor activity in African Caribbean tumours, and of PVT1, a long non-coding RNA located at 8q24 that confirms the strong involvement of this region in prostate tumours from men of African ancestry. Patient summary: Mortality of prostate cancer is higher in African Caribbean men than in French Caucasian men. Specificities of the former could be explained by genomic events linked with key genes such as DNA damage pathway genes PARP1, CDK12, and the oncogenic long non-coding RNA gene PVT1 at the 8q24 prostate cancer susceptibility locus.


Subject(s)
Black People/genetics , Prostatic Neoplasms/genetics , White People/genetics , Caribbean Region/ethnology , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Prostatectomy , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Whole Genome Sequencing
5.
Nat Commun ; 7: 12222, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27406316

ABSTRACT

HER2-positive breast cancer has long proven to be a clinically distinct class of breast cancers for which several targeted therapies are now available. However, resistance to the treatment associated with specific gene expressions or mutations has been observed, revealing the underlying diversity of these cancers. Therefore, understanding the full extent of the HER2-positive disease heterogeneity still remains challenging. Here we carry out an in-depth genomic characterization of 64 HER2-positive breast tumour genomes that exhibit four subgroups, based on the expression data, with distinctive genomic features in terms of somatic mutations, copy-number changes or structural variations. The results suggest that, despite being clinically defined by a specific gene amplification, HER2-positive tumours melt into the whole luminal-basal breast cancer spectrum rather than standing apart. The results also lead to a refined ERBB2 amplicon of 106 kb and show that several cases of amplifications are compatible with a breakage-fusion-bridge mechanism.


Subject(s)
Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Breast Neoplasms/metabolism , DNA Copy Number Variations , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Amplification , Gene Expression Profiling , Humans , Mutation , Polymorphism, Single Nucleotide , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Transcriptome , Whole Genome Sequencing
6.
Mol Cell Oncol ; 3(6): e1232186, 2016.
Article in English | MEDLINE | ID: mdl-28090578

ABSTRACT

Analysis of gene expression and whole-genome features of 64 human epidermal growth factor 2 (HER2)-positive breast tumors supports the idea that their intrinsic heterogeneity actually reflects their cell of origin, suggesting that HER2 amplification is an embedded event in the natural history of these tumors. Possible mechanisms for this event involve breakage-fusion-bridge and chromothripsis.

7.
Nat Commun ; 6: 10001, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26647970

ABSTRACT

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Leukemia, Lymphoid/genetics , Medulloblastoma/genetics , Mutation , Genome, Human , Humans
8.
BMC Bioinformatics ; 10 Suppl 6: S3, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19534752

ABSTRACT

BACKGROUND: Comparative genomics is a central step in many sequence analysis studies, from gene annotation and the identification of new functional regions in genomes, to the study of evolutionary processes at the molecular level (speciation, single gene or whole genome duplications, etc.) and phylogenetics. In that context, databases providing users high quality homologous families and sequence alignments as well as phylogenetic trees based on state of the art algorithms are becoming indispensable. METHODS: We developed an automated procedure allowing massive all-against-all similarity searches, gene clustering, multiple alignments computation, and phylogenetic trees construction and reconciliation. The application of this procedure to a very large set of sequences is possible through parallel computing on a large computer cluster. RESULTS: Three databases were developed using this procedure: HOVERGEN, HOGENOM and HOMOLENS. These databases share the same architecture but differ in their content. HOVERGEN contains sequences from vertebrates, HOGENOM is mainly devoted to completely sequenced microbial organisms, and HOMOLENS is devoted to metazoan genomes from Ensembl. Access to the databases is provided through Web query forms, a general retrieval system and a client-server graphical interface. The later can be used to perform tree-pattern based searches allowing, among other uses, to retrieve sets of orthologous genes. The three databases, as well as the software required to build and query them, can be used or downloaded from the PBIL (Pôle Bioinformatique Lyonnais) site at http://pbil.univ-lyon1.fr/.


Subject(s)
Databases, Genetic , Genomics/methods , Algorithms , Cluster Analysis , Internet , Phylogeny , Sequence Alignment , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...