Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 66(10): 6836-6848, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37191470

ABSTRACT

Bioactive NHC-transition metal complexes have shown promise as anti-cancer agents, but their potential use as radiosensitizers has been neglected so far. We disclose here a new series of bimetallic platinum(II) complexes displaying NHC-type bridging ligands, (bis-NHC)[trans-Pt(RNH2)I2]2, that have been synthesized via a simple, two-step procedure. They display cytotoxicity in the micromolar range on cancerous cell lines, accumulate in cells, and bind to genomic DNA, by inducing DNA damages. Notably, these bimetallic complexes demonstrate significant radiosensitizing effects on both ovarian cells A2780 and nonsmall lung carcinoma cells H1299. Further investigations revealed that bimetallic species make irradiation-induced DNA damages more persistent by inhibiting repair mechanisms. Indeed, a higher and persistent accumulation of both γ-H2AX and 53BP1 foci post-irradiation was detected, in the presence of the NHC-Pt complexes. Overall, we provide the first in vitro evidence for the radiosensitizing properties of NHC-platinum complexes, which suggests their potential use in combined chemo-radio therapy protocols.


Subject(s)
Ovarian Neoplasms , Radiation-Sensitizing Agents , Humans , Female , Platinum/pharmacology , Amines , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology
2.
Plant Commun ; 2(5): 100166, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34746757

ABSTRACT

Phelipanche ramosa is an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identify five putative SL receptors in P. ramosa and show that PrKAI2d3 is involved in the stimulation of seed germination. We demonstrate the high plasticity of PrKAI2d3, which allows it to interact with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrate that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with bioactivity comparable to that of ITCs. This study demonstrates that P. ramosa has extended its signal perception system during evolution, a fact that should be considered for the development of specific and efficient biocontrol methods.


Subject(s)
Heterocyclic Compounds, 3-Ring/metabolism , Hydrolases/genetics , Isothiocyanates/metabolism , Lactones/metabolism , Orobanchaceae/genetics , Plant Proteins/genetics , Amino Acid Sequence , Europe , Hydrolases/chemistry , Hydrolases/metabolism , Orobanchaceae/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Weeds/genetics , Plant Weeds/metabolism , Sequence Alignment
3.
Chemistry ; 27(16): 5230-5239, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33433914

ABSTRACT

We give a full account of the total synthesis of tiacumicin B (Tcn-B), a natural glycosylated macrolide with remarkable antibiotic properties. Our strategy is based on our experience with the synthesis of the tiacumicin B aglycone and on unique 1,2-cis-glycosylation steps. We used sulfoxide anomeric leaving-groups in combination with a remote 3-O-picoloyl group on the donors that allowed highly ß-selective rhamnosylation and noviosylation that rely on H-bond-mediated aglycone delivery. The rhamnosylated C1-C3 fragment was anchored to the C4-C19 aglycone fragment by a Suzuki-Miyaura cross-coupling. Ring-size-selective Shiina macrolactonization provided a semiglycosylated aglycone that was engaged directly in the noviolysation step with a virtually total ß-selectivity. Finally, a novel deprotection method was devised for the removal of a 2-naphthylmethyl ether on a phenol, and efficient removal of all the protecting groups provided synthetic tiacumicin B.

4.
Mycorrhiza ; 30(4): 491-501, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32506172

ABSTRACT

The arbuscular mycorrhizal symbiosis is a very common association between plant roots and soil fungi, which greatly contributes to plant nutrition. Root-exuded compounds known as strigolactones act as symbiotic signals stimulating the fungus prior to root colonization. Strigolactones also play an endogenous role in planta as phytohormones and contribute to the regulation of various developmental traits. Structure-activity relationship studies have revealed both similarities and differences between the structural features required for bioactivity in plants and arbuscular mycorrhizal fungi. In the latter case, bioassays usually measured a stimulation of hyphal branching on isolated fungi of the Gigaspora genus, grown in vitro. Here, we extended these investigations with a bioassay that evaluates the bioactivity of strigolactone analogs in a symbiotic situation and the use of the model mycorrhizal fungus Rhizophagus irregularis. Some general structural requirements for bioactivity reported previously for Gigaspora were confirmed. We also tested additional strigolactone analogs bearing modifications on the conserved methylbutenolide ring, a key element of strigolactone perception by plants. A strigolactone analog with an unmethylated butenolide ring could enhance the ability of R. irregularis to colonize host roots. Surprisingly, when applied to the isolated fungus in vitro, this compound stimulated germ tube elongation but inhibited hyphal branching. Therefore, this compound was able to act on the fungal and/or plant partner to facilitate initiation of the arbuscular mycorrhizal symbiosis, independently from hyphal branching and possibly from the strigolactone pathway.


Subject(s)
Glomeromycota , Mycorrhizae , Hyphae , Plant Roots , Symbiosis
5.
Angew Chem Int Ed Engl ; 59(16): 6612-6616, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32003915

ABSTRACT

A total synthesis of tiacumicin B, a natural macrolide whose remarkable antibiotic properties are used to treat severe intestinal infections, is reported. The strategy is in part based on the prior synthesis of the tiacumicin B aglycone, and on the decisive use of sulfoxides as anomeric leaving groups in hydrogen-bond-mediated aglycone delivery (HAD). This new HAD variant permitted highly ß-selective rhamnosylation and noviosylation. To increase convergence, the rhamnosylated C1-C3 fragment thus obtained was anchored to the C4-C19 aglycone fragment by adapting the Suzuki-Miyaura cross-coupling used for the aglycone synthesis. Ring-size-selective macrolactonization provided a compound engaged directly in the noviolysation step with virtually total ß selectivity. The final efficient removal of all the protecting groups provided synthetic tiacumicin B.


Subject(s)
Fidaxomicin/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Catalysis , Coordination Complexes/chemistry , Fidaxomicin/chemistry , Glycosylation , Hydrogen Bonding , Lactones/chemistry
6.
Phytochemistry ; 168: 112112, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31499274

ABSTRACT

Strigolactone (SL) plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. GR24, a synthetic SL analog, is the worldwide reference compound used in all bioassays for investigating the role of SLs in plant development and in rhizospheric interactions. In 2012, the first characterization of the SL receptor reported the detection of an unknown compound after incubation of GR24 samples with the SL receptor. We reveal here the origin of this compound (P270), which comes from a by-product formed during GR24 chemical synthesis. We present the identification of this by-product, named contalactone. A proposed chemical pathway for its formation is provided as well as an evaluation of its bioactivity on pea, Arabidopsis, root parasitic plant seeds and AM fungi, characterizing it as a SL mimic. Quality of GR24 samples can be easily checked by carrying out microscale hydrolysis in a basic aqueous medium to easily detect P270 as indicator of the presence of the contalactone impurity. In all cases, before being used for bioassays, GR24 must be careful purified by preparative HPLC.


Subject(s)
Arabidopsis/chemistry , Heterocyclic Compounds, 3-Ring/analysis , Lactones/analysis , Chromatography, High Pressure Liquid , Drug Contamination , Heterocyclic Compounds, 3-Ring/chemical synthesis , Lactones/chemical synthesis , Molecular Structure
7.
J Org Chem ; 83(2): 921-929, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29260550

ABSTRACT

Our study of the synthesis of the aglycone of tiacumicin B is discussed here. We imagined two possible strategies featuring a main retrosynthetic disconnection between C13 and C14. The first strategy was based on Suzuki-Miyaura cross-coupling of 1,1-dichloro-1-alkenes, but the failure of this pathway led us to use a Pd/Cu-dual-catalyzed cross-coupling of alkynes with allenes that had never been implemented before in a total synthesis context. We used density functional theory calculations to guide our strategic choices concerning a [2.3]-Wittig rearrangement step and the final ring-size selective Yamaguchi macrolactonization. This led to two syntheses of the aglycone of tiacumicin B, with one of last generation delivering ultimately an adequately protected and glycosylation-ready aglycone.

8.
Org Lett ; 19(15): 4006-4009, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28723103

ABSTRACT

Tiacumicin B is an antibiotic endowed with the remarkable ability to interact with a new biological target, giving it an inestimable potential in the context of the ever-growing and worrisome appearance of resistances of bacteria and mycobacteria to antibiotics. The synthesis of an aglycone of tiacumicin B ready for glycosylation is reported. The key steps of this approach are a [2,3]-Wittig rearrangement, a Pd/Cu-catalyzed allene-alkyne cross-coupling, a E-selective cross-metathesis, and a final ring-size selective macrolactonization.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Fidaxomicin/chemical synthesis , Catalysis , Copper/chemistry , Drug Design , Glycosylation , Molecular Structure , Palladium/chemistry
9.
J Org Chem ; 79(20): 9639-46, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25285939

ABSTRACT

Phosphoric acids with planar chiral paracyclophane scaffolds have been prepared in optically pure form starting from 1,8-dibromobiphenylene, by means of a chiral phosphorodiamidate as the phosphorylating agent. Structural characterization and configurational assignment have been performed by X-ray diffraction studies. The acids promote the organocatalytic enantioselective H-transfer reduction of α-arylquinolines with up to 90% enantiomeric excess.

SELECTION OF CITATIONS
SEARCH DETAIL